Compatibility of Lattice Stabilities Derived by Thermochemical and First Principles

  • A. P. Miodownik


Complex phase equilibria can now be routinely calculated in multicomponent commercial alloys,1 a development that can be traced to the single minded application of the concept of lattice stabilities by Kaufman.2 At that time such quantities were viewed with considerable suspicion, and could certainly not be calculated with any degree of confidence. Titanium was historically one of the first elements investigated, since this element exhibits an allotropic transformation and experimental data could therefore be obtained for both phases. The expressions used to define the phase stability included Debye temperature and electronic specific heat terms as well as the lattice stability at zero K.


Stack Fault Energy Debye Temperature Lattice Stability High Stack Fault Energy Electronic Specific Heat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Miodownik, Mater. Design 4 187 (1990)CrossRefGoogle Scholar
  2. 2.
    L. Kaufman and H. Bernstein, Computer Calculations of Phase Diagrams, Academic Press, New York, 1970.Google Scholar
  3. 3.
    A. P. Miodownik, Metallurgical Chemistry Symposium,NPL-HMSO 1971, (1972). p 233–244, and p. 484–493 (discussion).Google Scholar
  4. 4.
    A. F. Guillermet and M. Hillert, Calphad 12, 337 (1988).CrossRefGoogle Scholar
  5. 5.
    (a) N. J. Saunders, A. P. Miodownik, and A. T. Dinsdale, Calphad 12, 351 (1988)Google Scholar
  6. (b) N. J. Saunders and A. P. Miodownik, Materials Science and Technology 4, 768 (1988).Google Scholar
  7. 6.
    P. Gustafson, Int. J. Thermophys. 6, 395 (1985).CrossRefGoogle Scholar
  8. 7.
    A. P. Miodownik, J. Less Common Metals 114, 81 (1985).CrossRefGoogle Scholar
  9. 8.
    L. Kaufman, Contract Report FG 110–1, ASM, 1986.Google Scholar
  10. 9.
    J. O. Anderson, A. F. Guillermet, and P. Gustafson, Calphad 11, 365 (1987).CrossRefGoogle Scholar
  11. 10.
    A. F. Guillermet and W. Huang, TRITA-MAC, Materials Research Centre, Royal Inst. Technology, Stockholm, 0349 (1987).Google Scholar
  12. 11.
    V. L. Moruzzi and P. M. Marcus, Phys. Rev. B42, 8361 (1990).Google Scholar
  13. 12.
    C. Colinet, A. Pasturel, and P. Hicter, Calphad 9, 71 (1985).CrossRefGoogle Scholar
  14. 13.
    N. J. Saunders and L. Kaufman, Private Correspondence, 1987.Google Scholar
  15. 14.
    L. D. Blackburn, L. Kaufman, and M. Cohen, Acta Metall. 13, 533 (1965).CrossRefGoogle Scholar
  16. 15.
    G. L. Stepakoff and L. Kaufman, Acta Metall. 16, 13 (1968).CrossRefGoogle Scholar
  17. 16.
    L. J. Swartzendruber and B. Sundman, Bull. Alloy Phase Diagrams 4, 155 (1983).CrossRefGoogle Scholar
  18. 17.
    L. Kaufman, The Lattice Stability of the Iron Group Elements, Mats. Hillert Festschrift, Preprint, 1990.Google Scholar
  19. 18.
    R. E. Watson and L. H. Bennett, Calphad 5, 25 (1981).CrossRefGoogle Scholar
  20. 19.
    A. K. Nielssen, F.R. de Boer, R. Boom, P.F. de Châtel, W. C. Mattens, and A. R. Miedema, Calphad 7, 51 (1983).CrossRefGoogle Scholar
  21. 20.
    A. P. Miodownik, Calphad 2, 207 (1978).CrossRefGoogle Scholar
  22. 21.
    K. Ishida, Phil. Mag. 32, 663 (1975).CrossRefGoogle Scholar
  23. 22.
    S. Crampin, K. Hampel, D. D. Vvedensky, and J. M. MacLaren, J. Mater. Res. 5, 2107 (1990).CrossRefGoogle Scholar
  24. 23.
    J.-H. Xu, W. Lin, and J. Freeman, Phys. Rev. B43, 2018 (1991).Google Scholar
  25. 24.
    M. Igarshi, M. Khantha, and V. Vitek, Phil. Mag. B 63, 603 (1991).CrossRefGoogle Scholar
  26. 25.
    P. B. Legrand, Phil. Mag. B 49, 171 (1984).CrossRefGoogle Scholar
  27. 26.
    F. Aldinger, in Beryllium Science & Technology, edited by D. Webster and G. J. London, Plenum Pub. Co., 1979. p. 7.CrossRefGoogle Scholar
  28. 27.
    P. C. J. Gallagher, Metall. Trans. 1, 2429 (1970).Google Scholar
  29. 28.
    T. F. Page and B. Ralph, Phil. Mag. 26, 601 (1972).CrossRefGoogle Scholar
  30. 29.
    L. E. Murr, Scrip. Metal., 6, 203 (1972).CrossRefGoogle Scholar
  31. 30.
    A. P. Miodownik, Calphad 1, 301 (1977).CrossRefGoogle Scholar
  32. 31.
    A. T. Paxton, M. Methfessel, and H. M. Polatoglon, Phys. Rev. B41 8127 (1990).Google Scholar
  33. 32.
    R. J. Weiss, Phil. Mag. B 40, 425 (1979).CrossRefGoogle Scholar
  34. 33.
    L. Kaufman, Man. Lab Tech. Rep. II 1959 Abstract; Bull. Am. Phys. Soc. 4, 181 (1959).Google Scholar
  35. 34.
    D. Singh and D. A. Papaconstantopoulos, Phys. Rev. B42, (1990).Google Scholar
  36. 35.
    G. W. Fernando, R. E. Watson, M. Weinert, Y. I. Wang, and J. W. Davenport, Phys. Rev. B41, 11813 (1990).Google Scholar
  37. 36.
    V. L. Moruzzi, Phys. Rev. B37, 790 (1988).Google Scholar
  38. 37.
    G. Grimvall, Thermophysical Properties of Materials, North-Holland, Amsterdam, (1986). p. 112.Google Scholar
  39. 38.
    G. Grimvall, M. Thiessen, and A. F. Guillermet, Phys. Rev. B36, 7816 (1987).Google Scholar
  40. 39.
    R. E. Watson and M. Weinert, Phys. Rev. B30, 1641 (1984).Google Scholar
  41. 40.
    N. J. Saunders and A. P. Miodownik, Appl. Phys. A 36, 189 (1985).CrossRefGoogle Scholar
  42. 41.
    H. L. Skriver, Phys. Rev. B31, 1909 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • A. P. Miodownik
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of SurreyGuilford, SurreyEngland

Personalised recommendations