Ligands and Receptors of the Insulin Family: Role in Early Mammalian Development

  • Susan Heyner
  • L. V. Rao
  • Gilbert A. Schultz
Part of the Reproductive Biology book series (RBIO)


One of the major advances in developmental biology during the past decade has been the application of molecular biological techniques to learn more about gene expression and control during embryogenesis. These applications have been applied to a number of species, with notable success, for example, in Drosophila and Xenopus. For mammalian studies, the mouse has provided the embryo of choice. The murine preimplantation embryo may be cultured in vitro with ease, the biochemistry of early development has been studied extensively, and the genetics of no other mammalian species is known as well.


Preimplantation Development Morula Stage Preimplantation Mouse Early Mouse Embryo Preimplantation Mouse Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bassas, L., dc Pablo, F., Lesniak, M.A. and Roth, J. (1985) Ontogeny of receptors for insulin-like peptides in chick embryo tissues: early dominance of insulin-like growth factors over insulin receptors in brain. Endocrinology 117, 2321–2329PubMedCrossRefGoogle Scholar
  2. Beck, F., Samiani, N.J., Penchshow, J.D., Thorley, B., Treagar, G.W. and Coghlan, J.P. (1987) Histochemical localization of IGF-I and -II mRNA in the developing rat embryo. Development 101, 175–184PubMedGoogle Scholar
  3. Bell, G.I., Murray, J.C., Nakamura, Y., Kayaro, T., Eddy, R.L., Fan, Y.S., Byers, M. and Shows, T.B. (1989) Polymorphic human insulin-responsive glucose-transporter gene on chromosome 17p13. Diabetes 38, 1072–1075PubMedCrossRefGoogle Scholar
  4. Bhaumick, B. and Bala, R.M. (1987) Receptors for insulin-like growth factors I and II in developing mouse embryonic limb bud. Biochim. Biophys. Acta 927, 117–128PubMedCrossRefGoogle Scholar
  5. Biggers, J.D., and Borland, R.M. (1976) Physiological aspects of growth and development of the preimplantation mammalian embryo. Ann. Rev. Physio1.38, 95–119CrossRefGoogle Scholar
  6. Blundell, T.L. and Wood, S. P. (1975) Is the evolution of insulin Darwinian or due to selectively neutral mutation? Nature 257, 197–203PubMedCrossRefGoogle Scholar
  7. Blundell, T.L. and Humbel, R.E. (1980) Hormone families: pancreatic hormones and homologous growth factors. Nature 287, 781–787PubMedCrossRefGoogle Scholar
  8. Brison, D.R. and Leese, H.J. (1990) Glucose uptake by embryos from diabetic rats. Society for the Study of Fertility. Winter meeting, London 17–18 December, 1990. J. Reprod. Fert., Abstr. Series 6, p.40 Google Scholar
  9. Chatot, C L., Ziomek, C.A., Bavister, B.D., Lewis, J.L. and Torres, I. (1989) An improved culture medium supports development of random-bred 1-cell mouseembryos in vitro. J. Reprod. Fenil. 86, 679–688CrossRefGoogle Scholar
  10. DeChiara, T.M., Efstradiadis, A., and Robertson, E.J. (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor gene disrupted by targeting. Nature 345, 78–80PubMedCrossRefGoogle Scholar
  11. de Herreros, A.G. and Birnbaum, M.J. (1989) The regulation by insulin of glucose transporter gene expression in 3T3 adipocytes. J. Biol. Chem. 264, 9885–9890Google Scholar
  12. Esposito, G. (1984) Intestinal permeability of water-soluble nonelectrolytes: sugars, amino acids, peptides. In: “Pharmacology of Intestinal Permeability”,Czaky, T.Z. ed., Springer-Verlag, New York, pp. 567–611CrossRefGoogle Scholar
  13. Ebina, Y., Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, E., Ou, J., Masiarz, F., Kan, Y.W., Goldfine, I. D., Roth, R.A. and Rutter, W.J. (1985) The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40, 747–758PubMedCrossRefGoogle Scholar
  14. Evans, M.J. and Kaufman, M.H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156PubMedCrossRefGoogle Scholar
  15. Ewton, D.Z., Falen, S.L., and Florini, J.R. (1987) The type II insulin-like growth factor (IGF) receptor has low affinity for IGF-I analogs: pleiotropic actions of IGFs on myoblasts are apparently mediated by type I receptor. Endocrinology 120, 115–123PubMedCrossRefGoogle Scholar
  16. Froesch, E.R., Schmid, C., Schwander, J. and Zapf, J. (1985) Actions of insulin-like growth factors. Ann. Rev. Physiol. 47, 443–467CrossRefGoogle Scholar
  17. Gardner, D.K. and Leese, H.J. (1988) The role of glucose and pyruvate transport in regulating nutrient utilisation by preimplantation mouse embryos. Development 104, 423–429PubMedGoogle Scholar
  18. Harvey, M.B. and Kaye, P.L. (1988) Insulin stimulates protein synthesis in compacted mouse embryos. Endocrinology 116: 261–263Google Scholar
  19. Harvey, M.B. and Kaye, P.L. (1990) Insulin increases the cell number of the inner cell mass and stimulates morphological development of mouse blastocysts in vitro. Development 110, 963–967PubMedGoogle Scholar
  20. Heath J.K. and Shi, W.-K. (1986) Developmentally-regulated expression of insulin-like growth factors by differentiated murine teratocarcinomas and extraembryonic mesoderm. J. Exp. Embryol. Morphol. 95, 193–212Google Scholar
  21. Hendricks, S.A., de Pablo, F. and Roth, J. (1984) Early development and tissue-specific patterns of insulin binding in chick embryo, Endocrinology 115, 1315–1323PubMedCrossRefGoogle Scholar
  22. Heyner, S., Rao, L.V., Jarett, L. and Smith, R.M. (1989a) Preimplantation mouse embryos internalize maternal insulin via receptor-mediated endocytosis: pattern of uptake and functional correlations. Dev. Biol. 134, 48–58CrossRefGoogle Scholar
  23. Heyner, S., Smith, R.M. and Schultz, G.A. (1989b) Temporally regulated expression of insulin and insulin-like growth factors and their receptors in early mammalian development. BioEssays 11, 171–176CrossRefGoogle Scholar
  24. Heyner, S., Farber, M., and Rosenblum, I.Y. (1990) The insulin family of peptides: role in early mammalian development. In: “Role of Growth Factors in Development”. Nilsen-Hamilton, M., ed., Current Topics in Developmental Biology 24, 137–159Google Scholar
  25. Hogan, A., Heyner, S., Charron, M.J., Jenkins, N., Thorens, B. and Schultz, G.A. (1991) The glucose transporter genes expressed in the preimplantation mouse embryo are insulin-independent. SubmittedGoogle Scholar
  26. Jakobovits, A. (1986) The expression of growth factors and growth factor receptors during mouse embryogenesis. In: “Oncogenes and Growth Control”, Kahn, P. and Graf, T., eds., Springer-Verlag, pp. 912Google Scholar
  27. Kasanicki, M.A. and Pilch, P.F. (1990). Regulation of glucose-transporter function. Diabetes Care 13, 219–227PubMedCrossRefGoogle Scholar
  28. Martin, G.R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. 78, 7634–7638PubMedCrossRefGoogle Scholar
  29. Mattson, B.A., Rosenblum, I.Y., Smith, R.M. and Heyner, S. (1988) Autoradiographic evidence for insulin and insulin-like growth factor binding to early mouse embryos. Diabetes 37, 585–589PubMedCrossRefGoogle Scholar
  30. Mattson, B.A., Chambers, S.A. and de Pablo, F. (1989) Comparative aspects of insulin and the insulin receptor. In “Growth Factors in Mammalian Development”. Rosenblum, I.Y. and Heyner, S. eds. CRC Press pp. 47–70Google Scholar
  31. Morgan, D.O., Edman, J.C., Standring, D.M., Fried, V.A., Smith, M.C., Roth, R.A., and Rutter, W.J. (1988) Insulin-like growth factor II receptor as a multifunctional binding protein. Nature 329, 301–307CrossRefGoogle Scholar
  32. Mummery, C.L., van den Eijenden-van Raaij, A.J.M., Feijen, A., Freund, E., Hulskotte, E., Schoorlcmmer, J. and Kruijer, W. (1990) Expression of growth factors during the differentiation of embryonic stem cells in a monolaycr. Dev. Bio1.142, 406–413CrossRefGoogle Scholar
  33. Nagarajan, L., Anderson, W., Nissley, S.P., Rechler, M.M. and Jetten, A.M. (1985) Production of insulin-like growth factor II (MSA) by endoderm-like cells derived from embryonal carcinoma cells: Possible mediator of embryonic cell growth. J. Cell. Physiol. 124, 199–206PubMedCrossRefGoogle Scholar
  34. Peralta-Soler, A., Thompson, K.A., Smith, R.M. and Jarett, L. (1989) Immunological demonstration of the accumulation of insulin but not insulin receptors, in nuclei of insulin-treated cells. Proc. Natl. Acad. Sci. 86, 6640–6644CrossRefGoogle Scholar
  35. Rao, L.V., Farber, M., Smith, R.M. and Heyner, S. (1990a) The role of insulin in preimplantation mouse development. In “Early Embryo Development and Paracrine Relationships” UCLA Symposia on Molecular and Developmental Biology, New Series, Vol. 117, eds. Heyner, S. and Wiley, L.M. pp.109–124 Wiley-LissGoogle Scholar
  36. Rao, L.V., Wikarczuk, M.L. and Heyner, S. (1990b) Functional roles of insulin and insulin-like growth factors in preimplantation mouse development. In vitro cell. dev. biol. 26, 1043–1048Google Scholar
  37. Rappolee, D.A., Brenner, C.A., Schultz, R., Mark, D. and Werb, Z. (1988) Developmental expression of PDGF, TGF-a, and TGF-b in preimplantation mouse embryos. Science 241, 1823–1825PubMedCrossRefGoogle Scholar
  38. Rappolee, D.A., Mark, D., Banda, M.J. and Werb, Z. (1988) Wound macrophages express TGF-a and other growth factors in vivo: analysis by mRNA phenotyping. Science 241, 708–712PubMedCrossRefGoogle Scholar
  39. Rechler, M.M. and Nissley, S.P. (1985) The nature and regulation of the receptors for insulin-like growth factors. Ann. Rev. Physiol. 47, 425–442CrossRefGoogle Scholar
  40. Robinson, D.H., Smith, P.R. and Benos, D.J. (1990) Hexose transport in preimplantation rabbit blastocyst. J. Reprod. Fert. 89, 1–11CrossRefGoogle Scholar
  41. Rosen, O.M. (1987) After insulin binds. Science 237, 1452–1458PubMedCrossRefGoogle Scholar
  42. Rosenblum, I.Y., Mattson, B.A. and Heyner, S., (1986) Stage-specific insulin binding in mouse preimplantation embryos. Dev. Biol. 116, 261–263PubMedCrossRefGoogle Scholar
  43. Rosenfeld, R.O., Conover, C.A., Hodges, D., Lee, P.D.K., Misra, P., Hintz, R.L. and Li, C.H. (1987) Heterogenity of insulin-like growth factor I affinity for the insulin-like growth factor-II receptor: comparison of natural, synthetic and recombinant DNA-derived insulin-like growth factor I. Biochem. Biophys. Res. Comm. 143, 199–205PubMedCrossRefGoogle Scholar
  44. Roth, R.A. (1988) Structure of the receptor for insulin-like growth factor II: the puzzle amplified. Science 239, 1269–1271PubMedCrossRefGoogle Scholar
  45. Schultz, G.A., Hahnel, A., Hogan, A., Telford, N.A. and Watson, A.J. (1991) Utilization of genetic information in the preimplantation mammalian embryo: potential role of growth factors and receptors. Proc. Intl. Conf. on Frontiers in Reproductive Physiology, Nov. 810, 1990, New DelhiGoogle Scholar
  46. Seshagiri, P.B. and Bavister, B.D. (1989) Glucose inhibits development of hamster 8-cell embryos in vitro. Biol. Reprod. 40, 599–606PubMedCrossRefGoogle Scholar
  47. Shimizu, Y. and Shimizu, N. (1986) Rat hepatoma cell variants resistant to insulin-diphtheria toxin A fragment conjugates. J. Biol. Chem. 261, 7342–7346PubMedGoogle Scholar
  48. Taub, R., Roy, A., Dieter, R. and Koontz, J. (1987) Insulin as a growth factor in rat hepatoma cells. J. Biol. Chem. 262, 10893–10897PubMedGoogle Scholar
  49. Telford, N.A., Hogan, A., Franz, C.R. and Schultz, G.A. (1990) Expression of genes for insulin and insulin-like growth factors and receptors in early post-implantation mouse embryos and embryonal carcinoma cells. Mol. Repro. Dcv. 27: 81–92CrossRefGoogle Scholar
  50. Thorens, B., Sarkar, H.K., Kaback, H.R. and Lodish, H.R. (1988) Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney and b-pancreatic islet cells. Cell 55, 281–290PubMedCrossRefGoogle Scholar
  51. Tong, P.Y., Tollefscn, S.E. and Kornfeld, S. (1988) The cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II. J. Biol. Chem. 263, 2585–2588PubMedGoogle Scholar
  52. Ullrich, A., Bell, J., Chen, E., Herrera, R., Petruzzelli, L.M., Dull, T.J., Gray, A., Coussens, L., Liao, Y., Tsubokawa, M., Mason, A., Seeburg, P., Grunfeld, C., Rosen, O., and Ramachandran, J. (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313: 756–761PubMedCrossRefGoogle Scholar
  53. Ullrich, A., Gray, A., Tam, A., Yang-Feng, T., Tsubokawa, M., Collins, C., Henzel, W., LeBon, T., Kathuria, S., Chen, E., Jacobs, S., Francke, U., Ramachandran, J., and Fujita-Yamaguchi, Y. (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 5: 2503–2512PubMedGoogle Scholar
  54. Van Wyk, J.J., Graves, D.C., Casella, S.J. and Jacobs, S. (1985) Evidence from monoclonal antibody studies that insulin stimulates deoxyribonucleic acid synthesis through the type I somatomedin receptor. J. Clin. Endocrin. Metabol. 61, 639–643CrossRefGoogle Scholar
  55. Wales, R.G., Khurana, N.K., Edirisinghe and Pike, I.L. (1985) Metabolism of glucose by preimplantation mouse embryos in the presence of glucagon, insulin, epinephrine, cAMP, theophylline, and caffeine. Aust. J. Biol. Sci. 38, 421–428PubMedGoogle Scholar
  56. Walker, P.S., Ramlal, T., Donovan, J.A., Doering, T.P., Sandra, A., Klips, A. and Pessin, J.E.(1989) Insulin and glucose-dependent regulation of the glucose transport system in the rat L6 skeletal muscle cell line. J. Biol. Chem. 264, 6587–6595PubMedGoogle Scholar
  57. Werb, Z., Schultz, G.A., Pederson, R.A., Sturm, K. and Rappolee, D.A. (1989) Growth factor and growth factor receptor gene expression in peri-implantation mouse embryos. J. Cell. Biochem. Suppl. 13B, 192Google Scholar
  58. Werb, Z. and Rapplolee, D.A. (1990) The expression and function of growth factors during early development of mouse embryos. J. Cell. Biochem. Suppl. 14E, 48Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Susan Heyner
    • 1
  • L. V. Rao
    • 2
  • Gilbert A. Schultz
    • 3
  1. 1.Division of Reproductive Biology Department of Obstetrics and GynecologyUniversity of Pennsylvania Medical CenterPhiladelphiaUSA
  2. 2.Department of Obstetrics and Gynecology Metro Health Medical CenterCase Western Reserve UniversityClevelandUSA
  3. 3.Department of Medical BiochemistryUniversity of CalgaryCalgaryCanada

Personalised recommendations