Skip to main content

Microscopic and Macroscopic Loops in Nonperturbative Two-Dimensional Gravity

  • Chapter
Quantum Mechanics of Fundamental Systems 3

Abstract

Two-dimensional quantum gravity is relevant both for string theory and as a toy model of higher-dimensional quantum gravity. The definition of pure 2D quantum gravity and quantum gravity coupled to matter in terms of matrix models1 is very explicit and rigorous. Matrix realizations of pure gravity and gravity coupled to certain minimal conformai field theories (and their massive deformations) can be solved by the application of large-N techniques. Recently, an exact expression for the specific heat of some of these models was found in the continuum limit.2-6 In this chapter, we will show that the correlation functions of operators in these models can also be easily computed. We distinguish between two kinds of operators, microscopic and macroscopic loops. By microscopic loops we mean expressions like Tr M p in the matrix models with p finite. They contain all the information about integrals over the surface of local operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ambjørn, B. Durhuus, and J. Fröhlich, Nucl. Phys. B257, 433 (1985); F. David, Nucl. Phys. B257, 45 (1985); V. A. Kazakov, I. K. Kostov, and A. A. Migdal, Phys. Lett. 157B, 295 (1985); V. A. Kazakov, Phys. Lett. 150B, 282 (1985); F. David, Nucl. Phys. B257, 45 (1985); V. A. Kazakov, Phys. Lett. 119A, 140 (1986); D. V. Boulatov and V. A. Kazakov, Phys. Lett. B186, 379 (1987); V. A. Kazakov and A. Migdal, Nucl. Phys. B311, 171 (1988).

    Article  ADS  Google Scholar 

  2. E. Brézin and V. Kazakov, ENS preprint, October, 1989.

    Google Scholar 

  3. M. Douglas and S. Shenker, Rutgers preprint, October, 1989.

    Google Scholar 

  4. D. Gross and A. Migdal, Princeton preprint, October, 1989.

    Google Scholar 

  5. E. Brézin, M. Douglas, V. Kazakov and S. Shenker, Rutgers preprint, December, 1989.

    Google Scholar 

  6. D. Gross and A. Migdal, Princeton preprint, December, 1989.

    Google Scholar 

  7. M. L. Mehta, Comm. Math. Phys. 79, 1327 (1981); S. Chadha, G. Mahoux, and M. L. Mehta, J. Phys. A. 14, 579 (1981).

    Article  Google Scholar 

  8. E. Brézin, C. Itzykson, G. Parisi, and J.-B. Zuber, Comm. Math. Phys. 59, 35 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. T. Banks, M. Douglas, N. Seiberg, and S. Shenker, in preparation.

    Google Scholar 

  10. C. Itzykson and J.-B. Zuber, J. Math. Phys. 21(3), 411 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. D. Bessis, C. Itzykson, and J.-B. Zuber, Adv. Appl. Math. 1, 109 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Douglas and S. Shenker, presentation at the Soviet-American String Workshop, Princeton, October 30-November 2, 1989.

    Google Scholar 

  13. V. A. Kazakov, Niels Bohr Inst. preprint NBI-HE-89-25 (1989).

    Google Scholar 

  14. I. M. Geľfand and L. A. Dikii, Russian Math. Surveys 30:5, 77 (1975).

    Article  ADS  Google Scholar 

  15. G. Segal and G. Wilson, Pub. Math. I. H. E. S. 61, 5 (1985).

    MathSciNet  MATH  Google Scholar 

  16. E. Witten, Talk at Rutgers University, December, 1989.

    Google Scholar 

  17. F. David, Nucl. Phys. B257, 45 (1985).

    Article  ADS  Google Scholar 

  18. We thank L. Susskind for discussions of this point.

    Google Scholar 

  19. See S. Carlip and S. P. de Alwis, IAS preprint, October, 1989, for a discussion of problems with the dilute wormhole approximation in 2 + 1 dimensions.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Banks, T., Douglas, M.R., Seiberg, N., Shenker, S.H. (1992). Microscopic and Macroscopic Loops in Nonperturbative Two-Dimensional Gravity. In: Teitelboim, C., Zanelli, J. (eds) Quantum Mechanics of Fundamental Systems 3. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3374-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3374-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6489-4

  • Online ISBN: 978-1-4615-3374-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics