Gauge Anomalies in Two Dimensions

  • R. Rajaraman
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


In these lectures, I will try to explain how two-dimensional field theories in which gauge invariance is anomalously broken may be treated consistently and to outline the resultant interesting and unfamiliar features of such theories. As is well known, such anomalies are not special to two dimensions; they can occur in any number of dimensions where chiral fermions exist, and it was believed until a few years ago that in all such cases the gauge anomaly dealt a fatal blow to the theory. The anomaly was believed, variously, to lead to the failure of renormalizability, unitarity, Lorentz invariance, and even canonical consistency. This last was believed to fail because of the apparent conflict between the current-anomaly equation D VJ V = R(A μ ), where R(A μ ) is the anomalous divergence, and the gauge field equation D μF μV = J v , which implies D VJ V = 0.


Poisson Bracket Gauge Invariance Gauge Field Lorentz Invariance Abelian Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Fadeev, Phys. Lett. 145B, 81 (1984).ADSGoogle Scholar
  2. 2.
    R. Jackiw and R. Rajaraman, Phys. Rev. Lett. 54, 1219 (1985); R. Rajaraman, Phys. Lett. 154B, 305 (1985).ADSMATHCrossRefGoogle Scholar
  3. 3.
    R. Rajaraman, Phys. Lett. 162B, 148 (1985).MathSciNetADSGoogle Scholar
  4. 4.
    Subsequent to Refs. 1 and 2 the Chiral Schwinger Model and chiral QCD have been further analyzed by several authors. A representative sample includes H. D. Girotti, H. J. Rothe, and K. D. Rothe, Phys. Rev. D33, 514 (1986); D34, 592 (1986); I. G. Halliday, E. Rabinovici, A. Schwimmer, and M. Chanowitz, Nucl. Phys. B268, 413 (1986); R. Banerjee, Phys. Rev. Lett. 56, 1889 (1986); M. Chanowitz, Phys. Lett. 171B, 280 (1986); K. Harada, T. Kubota, and I. Tsutsui, Phys. Lett. 173B, 77 (1986); R. D. Ball, Phys. Lett. 183B, 315 (1987); C. A. Linhares, H. J. Rothe, and K. D. Rothe, Phys. Rev. D35, 2501 (1987); K. Funakubo and T. Kashiwa, Kyushu University preprint 87-HE-4 (1987); S. Miyake and K. Shizuya, Phys. Rev. D36, 3781 (1987); Tohoku University preprint TU/87/322; D. Boyanowski, Nucl. Phys. B294, 223 (1987); N. K. Falck and G. Kramer, Ann. Phys. (NY) 176, 330 (1987); Z. Phys. C37, 321 (1988); A. Delia Selva, L. Masperi, and G. Thompson, Trieste preprint ICTP/87/131 (1987); T. Berger, N. K. Falck, and G. Kramer, Hamburg preprint DESY 88-009 (1988); S. H. Li, D. K. Park, and B. H. Cho, Mod. Phys. Lett. A3, 201 (1988); D. K. Park, S. H. Yi, B. H. Cho, and Y. S. Myung, Phys. Rev. D36, 2481 (1987); J. Lott and R. Rajaraman, Phys. Lett. 165B, 321 (1985); K. Harada, Tokyo Institute of Technology preprint TIT/hep-118 (1987); K. Harada and I. Tsutsui, Phys. Lett. B183, 311 (1987); N. K. Falck and G. Kramer, Phys. Lett. 193B, 257 (1987); E. Abdalla and K. D. Rothe, Phys. Rev. D36, 3190 (1987).Google Scholar
  5. 5.
    P. Mitra and R. Rajaraman, Phys. Rev. D37, 448 (1988).MathSciNetADSGoogle Scholar
  6. 6.
    E. Witten, Comm. Math. Phys. 92, 455 (1984); A. M. Polyakov and P. B. Wiegmann, Phys. Lett. 131B, 121 (1983); R. E. Gamboa-Saravi, F. A. Schaposnik, and J. E. Solomin, Phys. Rev. D30, 1353 (1984).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • R. Rajaraman
    • 1
  1. 1.Centre for Theoretical StudiesIndian Institute of ScienceBangaloreIndia

Personalised recommendations