Structure and Classification of Retroviruses

  • John M. Coffin
Part of the The Viruses book series (VIRS)


The retroviruses encompass a large family of infectious agents (Retroviridae) unified by a common virion structure and mode of replication. Retroviruses have been isolated from most vertebrate species in which they have been sought, and have been found to display a remarkable diversity in their association with the host. Table I gives a list of some of the more commonly encountered viruses. At the one end of the diversity, infections with some retroviruses can lead to uniformly fatal conditions, such as AIDS, a variety of malignancies, neurologic diseases, and other clinical conditions. At the other end, some retroviruses induce only a benign viremia with no outward adverse effects, and can even become established as DNA in the germ line and passed as “endogenous” viruses from generation to generation. Indeed, the line between endogenous viruses and the retrotransposable elements found in large numbers in the genome of all eukaryotes is very fine (Chapters 1 and 4). This chapter will be concerned with a discussion of general properties of the retroviruses, the structure of their virions, and their classification. Its scope will be limited to those elements which are demonstrably viruses.


Human Immunodeficiency Virus Cold Spring Harbor Laboratory Bovine Leukemia Virus Equine Infectious Anemia Virus Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrigo, S., and Beemon, K., 1988, Regulation of Rous sarcoma virus RNA splicing and stability, Mol. Cell. Biol. 18:4858.Google Scholar
  2. Arrigo, S., Yun, M., and Beemon, K. 1987, Cis-acting regulatory elements within gag genes of avian retroviruses, Mol. Cell. Biol. 7:388.PubMedGoogle Scholar
  3. Ball, J. K., and Dekaban, G. A., 1987, Characterization of early molecular biological events associated with thymic lymphoma induction following infection by a thymotropic type-B retrovirus, Virology 161:357.PubMedCrossRefGoogle Scholar
  4. Bernhard, W., 1960, The detection and study of tumor viruses with the electron microscope, Cancer Res. 20:712.PubMedGoogle Scholar
  5. Bishop, J. M., 1991, Molecular themes in oncogenesis, Cell 64:235.PubMedCrossRefGoogle Scholar
  6. Bishop, J. M., and Varmus, H. E., 1982, Functions and origins of retroviral transforming genes, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 999–1108, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  7. Bolognesi, D. P., Montelaro, R. C., Frank, H., and Schafer, W., 1978, Assembly of type C oncornaviruses: A model, Science 199:183.PubMedCrossRefGoogle Scholar
  8. Bosch, M. L., Earl, P. L., Fargnoli, K., Picciafuocco, S., Giobini, F., Wong-Staal, F., and Franchini, G., 1989, Identification of the fusion peptide of primate immunodeficiency viruses, Science 244:694.PubMedCrossRefGoogle Scholar
  9. Bova, C. A., Olsen, J. C., and Swanstrom, R., 1988, The avian retrovirus env gene family. Molecular analysis of host range and antigenic variants, J. Virol. 62:75.PubMedGoogle Scholar
  10. Bowerman, B, Brown, P. O., Bishop, J. M., and Varmus, H. E., 1989, A nucleoprotein complex mediates the integration of retroviral DNA, Genes Dev. 3:469.PubMedCrossRefGoogle Scholar
  11. Brown, F., 1989, The classification and nomenclature of viruses: Summary of results of meetings of the International Committee on Taxonomy of Viruses in Edmonton, Canada 1987, Intervirology 30:181.PubMedGoogle Scholar
  12. Brown, P. 0., 1990, Integration of retroviral DNA, in: Retroviruses. Strategies of Replication (R. Swanstrom and P. K. Vogt, eds.), pp. 19–48, Springer-Verlag, New York.Google Scholar
  13. Bryant, M., and Ratner, L., 1990, Myristoylation-dependent replication and assembly of human immunodeficiency virus 1, Proc. Natl. Acad. Sci. USA 87:523.PubMedCrossRefGoogle Scholar
  14. Bushman, F. D., and Craigie, R., 1991, Activities of human immunodeficiency virus (HIV) integration protein in vitro: Specific cleavage and integration of HIV DNA, Proc. Natl. Acad. Sci. USA 88:1339.PubMedCrossRefGoogle Scholar
  15. Bushman, F. D., Fujiwara, T., and Craigie, R., 1990, Retroviral DNA integration directed by HIV integration protein in vitro, Science 249:1555.PubMedCrossRefGoogle Scholar
  16. Coffin, J. M., 1982a, Structure of the retroviral genome, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 261–369, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  17. Coffin, J. M., 1982b, Endogenous viruses, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 1109–1204, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  18. Coffin, J. M., 1990a, Genetic variation in retroviruses, in: Applied Virology Research, Vol. 2 (E. Karstak, R. G. Marusyk, F. A. Murphy, and M. H. V. Van Regenmortel, eds.), pp. 11–13, Plenum Press, New York.Google Scholar
  19. Coffin, J. M., 1990b, Retroviridae and their replication, in: Virology, 2nd ed. (B. Fields, D. Knipe, and R. Chanock, eds.), pp. 1437–1500, Raven Press, New York.Google Scholar
  20. Coffin, J. M., Varmus, H. E., Bishop, J. M., Essex, M., Hardy, W. D., Martin, G. S., Rosenberg, N. E., Scolnick, E. M., Weinberg, R. A., and Vogt, P. K., 1981, A proposal for naming host cell-derived inserts in retrovirus genomes. J. Virol. 40:953.PubMedGoogle Scholar
  21. Coffin, J., Haase, A., Levy, J. A., Montagnier, L., Oroszlan, S., Teich, N., Temin, H., Toyoshima, K., Varmus, H., Vogt, P., and Weiss, R., 1986, Human immunodeficiency viruses, Science 232:697.PubMedCrossRefGoogle Scholar
  22. Cohen, M., Powers, M., O’Connell, C., and Kato, N., 1985, The nucleotide sequence of the env gene from the human provirus ERV3 and isolation and characterization of an ERV3-specific cDNA, Virology 147:449.PubMedCrossRefGoogle Scholar
  23. Copeland, N. G., Jenkins, N. A., Nexo, B., Schultz, A. M., Rein, A., Middelsen, T., and Jorgensen, P., 1988, Poorly expressed endogenous ecotropic provirus of DBA/2 mice encodes a mutant Pr65gag protein that is not myristylated, J. Virol. 62:479.PubMedGoogle Scholar
  24. Craigie, R., Fujiwara, T., and Bushman, F., 1990, The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro, Cell 62:829.PubMedCrossRefGoogle Scholar
  25. Crane, S. E., Clements, J. E., and Narayan, O., 1988, Separate epitopes in the envelope of Visna virus are responsible for fusion and neutralization: Biological implications for anti-fusion antibodies in limiting virus replication, J. Virol. 62:2680.PubMedGoogle Scholar
  26. Csepany, T., Lin, A., Baldick, C. J., and Beemon, K., 1990, Sequence specificity of N6- adenosine methyltransferase, J. Biol. Chem. 265:20117.PubMedGoogle Scholar
  27. Dalton, A. J., Potter, M., and Merwin, R. M., 1961, Some ultrastructural characteristics of a series of primary and secondary plasma-cell tumors of the mouse, J. Natl. Cancer Inst. 26:1221.PubMedGoogle Scholar
  28. Di Marzo Veronese, F., Copeland, T. D., De Vico, A. L., Rahman, R., Oroszlan, S., Gallo, R. C., and Sarngadharan, M. G., 1986, Characterization of highly immunogenic p66/ p51 as the reverse transcriptase of HTLV-III/LAV, Science 231:1289.PubMedCrossRefGoogle Scholar
  29. Dickson, C., Eisenmann, R., Fan, H., Hunter, E., and Teich, N., 1982, Protein biosynthesis and assembly, in: RNA Tumor Viruses (R. A. Weiss, N. Teich, H. E. Varmus, and J. M. Coffin, eds.), pp. 513–648, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  30. Dickson, C., Eisenmann, R., and Fan, H., 1985, Protein synthesis and assembly, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 135–146, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  31. Doolittle, R. F., Feng, D.-F., Johnson, M. S., and McClure, M. A., 1989, Origins and evolutionary relationships of retroviruses, Q. Rev. Biol. 64:1.PubMedCrossRefGoogle Scholar
  32. Doolittle, R. F., Feng, D. F., McClure, M. A., and Johnson, M. S., 1990, Retrovirus phylogeny and evolution, in: Retroviruses. Strategies of Replication (R. Swanstrom and P. K. Vogt, eds.), pp. 1–18, Springer-Verlag, New York.Google Scholar
  33. Dorner, A. J., and Coffin, J. M., 1986, Determinants for receptor interaction and cell killing on the avian retrovirus glycoprotein gp85, Cell 45:365.PubMedCrossRefGoogle Scholar
  34. Dorner, A. J., Stoye, J. P., and Coffin, J. M., 1985, Molecular basis of host range variation in avian retroviruses, J. Virol. 53:32.PubMedGoogle Scholar
  35. Dudley, J. P., 1988, Mouse mammary tumor proviruses from a T-cell lymphoma are associated with the retroposon L1Md, J. Virol. 62:472.PubMedGoogle Scholar
  36. Earl, P. L., Doms, R. W., and Moss, B., 1990, Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein, Proc. Natl. Acad. Sci. USA 87:648.PubMedCrossRefGoogle Scholar
  37. Fine, D., and Schochetman, G., 1978, Type D primate retroviruses. A review, Cancer Res. 38:3123.PubMedGoogle Scholar
  38. Freed, E. O., Myers, D. J., and Risser, R., 1990, Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41, Proc. Natl. Acad. Sci. USA 87:4650.PubMedCrossRefGoogle Scholar
  39. Fu, S., Phillips, N., Jentoft, J., Tuazon, P. T., Traugh, J. A., and Leis, J., 1985, Site-specific phosphorylation of avian retrovirus nucleocapsid protein pp12 regulates binding to RNA, J. Biol. Chem. 260:9941.PubMedGoogle Scholar
  40. Fu, X., Katz, R. A., Skalka, A. M., and Leis, J., 1988, Site-directed mutagenesis of the avian retrovirus nucleocapsid protein pp12: Mutation which affects RNA binding in vitro blocks viral replication, J. Biol. Chem. 263:2134.PubMedGoogle Scholar
  41. Gallaher, W. R., 1987, Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus, Cell 50:327.PubMedCrossRefGoogle Scholar
  42. Gonda, M., Boyd, A. L., Nagashima, K., and Gilden, R. V., 1989, Pathobiology, molecular organization, and ultrastructure of HIV, Arch. AIDS Res. 3:1.Google Scholar
  43. Harada, F., Tsukada, N., and Kato, N., 1987, Isolation of three kinds of human endogenous retrovirus-like sequences using tRNAPro as a probe, Nucleic Acids Res. 15:9153.PubMedCrossRefGoogle Scholar
  44. Hawley, R. G., Shulman, M. J., and Hozumi, N., 1984, Transposition of two different intracisternal A particle elements into an immunoglobulin kappa-chain gene, Mol. Cell. Biol. 4:2565.PubMedGoogle Scholar
  45. Heberlein, C., Kawai, M., Franz, M.-J., Beck-Engeser, G., Daniel, C. P., Ostertag, W., and Stocking, C., 1990, Retrotransposons as mutagens in the induction of growth autonomy in hematopoietic cells, Oncogene 5:1799.PubMedGoogle Scholar
  46. Hehlmann, R., Brack-Werner, R., and Leib-Mosch, C., 1988, Human endogenous retroviruses, Leukemia 2:167S.PubMedGoogle Scholar
  47. Heidecker, G., Lerche, M. W., Lowenstine, L. J., Lackner, A. A., Osborn, K. G., Gardner, M. B., and Marx, P. A., 1987, Induction of simian acquired immune deficiency syndrome (SAIDS) with a molecular clone of a type D SAIDS retrovirus, J. Virol. 61:3066.PubMedGoogle Scholar
  48. Heidmann, O., and Heidmann, T., 1991, Retrotransposition of a mouse IAP sequence tagged with an indicator gene, Cell 64:159.PubMedCrossRefGoogle Scholar
  49. Henderson, L. E., Krutzsch, H. C., and Oroszlan, S., 1983, Myristyl amino-terminal acylation of murine retrovirus proteins: An unusual post-translational protein modification, Proc. Natl. Acad. Sci USA 80:339.PubMedCrossRefGoogle Scholar
  50. Henderson, L. E., Sowder, R., Copeland, T. D., Oroszlan, S., Arthur, L. O., Robey, W. G., and Fischinger, P. J., 1987, Direct identification of class II histocompatibility DR proteins in preparations of human T-cell lymphotropic virus type III, J. Virol. 61:629.PubMedGoogle Scholar
  51. Horn, T. M., Huebner, K., Croce, C., and Callahan, R., 1986, Chromosomal locations of members of a family of novel endogenous human retroviral genomes, J. Virol. 58:955.PubMedGoogle Scholar
  52. Horowitz, M., Luria, S., Rechavi, G., and Givol, D., 1984, Mechanism of activation of the mouse c-mos oncogene by the LTR of an instracisternal A-particle gene, EMBO J. 3:2937.PubMedGoogle Scholar
  53. Jacks, T., 1990, Translational suppression in gene expression in retroviruses and retrotransposons, in: Retroviruses. Strategies of Replication (R. Swanstrom and P. K. Vogt, eds.), pp. 93–124, Springer-Verlag, New York.Google Scholar
  54. Jacks, T., and Varmus, H. E., 1985, Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting, Science 230:1237.PubMedCrossRefGoogle Scholar
  55. Jorgensen, E. C., Kjeldgaard, N. O., Pedersen, F. S., and Jorgensen, P., 1988, A nucleotide substitution in the gag N terminus of the endogenous ecotropic DBA/2 virus prevents Pr65gag myristylation and virus replication, J. Virol. 62:3217.PubMedGoogle Scholar
  56. Kane, S. E., and Beemon, K., 1985, Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: Implications for RNA processing, Mol. Cell. Biol. 5:2298.PubMedGoogle Scholar
  57. Katz, R. A., and Jentoff, J. E., 1989, What is the role of the Cys-His motif in retroviral nucleocapsid (NC) proteins? Bioessays 11:176.PubMedCrossRefGoogle Scholar
  58. Katz, R. A., and Skalka, A. M., 1990, Control of retroviral RNA splicing through maintenance of suboptimal processing signals, Mol. Cell. Biol. 10:696.PubMedGoogle Scholar
  59. Katz, R. A., Kotler, M., and Skalka, A. M., 1988, cis-Acting intron mutations that affect the efficiency of avian retroviral RNA splicing: Implications for mechanisms of control, J. Virol. 62:2686.PubMedGoogle Scholar
  60. Katzman, M., Katz, R. A., Skalka, A. M., and Leis, J., 1989, The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration, J. Virol. 63:5319.PubMedGoogle Scholar
  61. Kuff, E. L., and Lueders, K. K., 1988, The intracisternal A-particle gene family: Structure and functional aspects, Adv. Cancer Res. 51:183.PubMedCrossRefGoogle Scholar
  62. Kuff, E. L., Wivel, N. A., and Lueders, K. K., 1968, The extraction of intracisternal A particles from a mouse plasma-cell tumor, Cancer Res. 28:2137.PubMedGoogle Scholar
  63. Leis, J., Baltimore, D., Bishop, J. M., Coffin, J., Fleissner, E., Goff, S. P., Oroszlan, S., Robinson, H., Skalka, A. M., Temin, H. M., and Vogt, V., 1988, Standardized and simplified nomenclature for proteins common to all retroviruses, J. Virol. 62:1808.PubMedGoogle Scholar
  64. Leis, J., Weber, I., Wlodawer, A., and Skalka, A. M., 1990, Structure-function analysis of the Rous sarcoma virus-specific proteinase, ASM News 56:77.Google Scholar
  65. Levy, J. A., 1978, Xenotropic type C viruses, in: Current Topics in Microbiology and Immunology, Vol. 79, pp. 111–213, Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  66. Linial, M. L., and Miller, A. D., 1990, Retroviral RNA packaging: Sequence requirements and implications, in: Retroviruses. Strategies of Replication (R. Swanstrom and P. K. Vogt, eds.), pp. 125–152, Springer-Verlag, New York.Google Scholar
  67. Lueders, K. K., and Kuff, E. L., 1977, Sequences associated with intracisternal A particles are repeated in the mouse genome, Cell 12:963.PubMedCrossRefGoogle Scholar
  68. Mager, D. X., and Greeman, J. D., 1987, Human endogenous retroviruslike genome with type C pol sequences and gag sequences related to human T-cell lymphotropic viruses, J. Virol. 61:4060.PubMedGoogle Scholar
  69. Mann, R. S., Mulligan, R. C., and Baltimore, D., 1983, Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus, Cell 32:871.CrossRefGoogle Scholar
  70. Mariani-Costantini, R., Horn, T. M., and Callahan, R., 1989, Ancestry of a human endogenous retrovirus family, J. Virol. 63:4982.PubMedGoogle Scholar
  71. Marx, P. A., Bryant, M. L., Osborn, K. G., Maul, D. H., Lerche, N. W., Lowenstine, L. J., Kluge, J. D., Saiss, C. P., Henrickson, R. V., Shiigi, S. M., Wilson, B. J., Malley, A., Olson, L. C., McNulty, W. P., Arthur, L. O., Gilden, R. V., Barker, C. S., Hunter, E., Munn, R. J., Heidecker, G., and Gardner, M. B., 1985, Isolation of a new serotype of simian acquired immune deficiency syndrome type D retrovirus from Celebes black macaques (Macaca nigra) with immune deficiency and retroperitoneal fibromatosis, J. Virol. 56:571.PubMedGoogle Scholar
  72. Meric, C., and Spahr, P.-F., 1986, Rous sarcoma virus nucleic acid binding protein p12 is necessary for viral 70S RNA dimer formation and packaging, J. Virol. 60:450.PubMedGoogle Scholar
  73. Meric, C., Darlix, J. L., and Spahr, P.-F., 1986, It is Rous sarcoma virus p12 and not p19 that binds tightly to Rous sarcoma virus RNA, J. Mol. Biol. 173:531.CrossRefGoogle Scholar
  74. Mietz, J. A., Grossman, Z., Lueders, K. K., and Kuff, E. L., 1987, Nucleotide sequence of a complete mouse intracisternal A-particle genome: Relationship to known aspects of particle assembly and function, J. Virol. 61:3020.PubMedGoogle Scholar
  75. Miller, C. K., and Temin, H. M., 1986, Insertion of several different DNAs in reticuloendotheliosis virus strain T suppresses transformation by reducing the amount of subgenomic DNA, 1. Virol. 58:75.Google Scholar
  76. Miller, M., Jaskolski, M., Mohana Rao, J. K., Leis, J., and Wlodawer, A., 1989, Crystal structure of a retroviral protease proves relationship to aspartic protease family, Nature 337:576.PubMedCrossRefGoogle Scholar
  77. Murphy, F. A., and Kingsbury, D. A., 1991, Virus taxonomy, in: Fundamental Virology (B. Fields, D. Knipe, and R. Chanock, eds.), pp. 9–36, Raven Press, New York.Google Scholar
  78. Myers, G., Rabson, A. B., Josephs, S. F., Smith, T. F., Berzofsky, J. A., and Wong-Staal, F., 1990, Human retroviruses and AIDS, 1990, Los Alamos National Laboratory, Los Alamos, N.M.Google Scholar
  79. Navia, M. A., Fitzgerald, P. M. D., McKeever, B. M., Leu, C.-T., Heimbach, J. C., Herber, W. K., Sigal, I. S., Darke, P. L., and Springer, J. P., 1989, Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1, Nature 337:615.PubMedCrossRefGoogle Scholar
  80. Nusse, R., van Ooyen, A., Rijsewijk, F., van Lohuizen, M., Schuuring, E., and van’t Veer, L., 1985, Retroviral insertional mutagenesis in murine mammary cancer, Proc. R. Soc. Lond. 226:3.PubMedCrossRefGoogle Scholar
  81. Ono, M., 1986, Molecular cloning and long terminal repeat sequences of human endoge-nous retrovirus genes related to types A and B retrovirus genes, J. Virol. 58:937.PubMedGoogle Scholar
  82. Ono, M., Cole, M. D., White, A. T., and Huang, R. C. C., 1980, Sequence organization of cloned intracisternal A particle genes, Cell 21:465.PubMedCrossRefGoogle Scholar
  83. Ono, M., Toh, H., Miyata, T., and Awaaya, T., 1985, Nucleotide sequence of the Syrian hamster intracisternal A-particle gene: Close evolutionary relationship of type A particle gene to types B and D oncovirus genes, J. Virol. 5:387.Google Scholar
  84. Oroszlan, S., and Luftig, R. B., 1990, Retroviral proteinases, in: Retroviruses. Strategies of Replication (R. Swanstrom and P. K. Vogt, eds.), pp. 153–186, Springer-Verlag, New York.Google Scholar
  85. Perez, L. G., Davis, G. L., and Hunter, E., 1987, Mutants of the Rous sarcoma virus envelope glycoprotein that lack the transmembrane anchor and cytoplasmic domains: Analysis of intracellular transport and assembly into virions, J. Virol. 61:2981.PubMedGoogle Scholar
  86. Prasad, V. R., and Goff, S. P., 1989, Linker insertion mutagenesis of the human immunodeficiency virus reverse transcriptase expressed in bacteria: Definition of the minimal polymerase domain, Proc. Natl. Acad. Sci. USA 86:3104.PubMedCrossRefGoogle Scholar
  87. Prats, A. C., Sarih, L., Gabus, C., Litvak, S., Keith, G., and Darlix, J.-L., 1988, Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA, EMBO 1. 7:1136.Google Scholar
  88. Prats, A.-C., Roy, C., Wang, P., Erard, M., Housset, V., Gabus, C., Paoletti, C., and Darlix, J.-L., 1990, cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA, J. Virol. 64:774.PubMedGoogle Scholar
  89. Rein, A., McClure, M. R., Rice, N. R., Luftig, R. B., and Schultz, A. M., 1986, Myristylation site in Pr65gag is essential for virus particle formation by Moloney murine leukemia virus, Proc. Natl. Acad. Sci. USA 83:7246.PubMedCrossRefGoogle Scholar
  90. Rhee, S. S., and Hunter, E., 1987, Myristylation is required for intracellular transport but not for assembly of D-type retrovirus capsids, J. Virol. 61:1045.PubMedGoogle Scholar
  91. Rhee, S. S., and Hunter, E., 1990, A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus, Cell 63:77.PubMedCrossRefGoogle Scholar
  92. Rhee, S. S., Hui, H., and Hunter, E., 1990, Preassembled capsids of type D retroviruses contain a signal sufficient for targeting specifically to the plasma membrane, J. Virol. 64:3844.PubMedGoogle Scholar
  93. Roberts, M. M., and Oroszlan, S., 1989, The preparation and biochemical characterization of intact capsids of equine infectious anemia virus, Biochem. Biophys. Res. Commun. 160:486.PubMedCrossRefGoogle Scholar
  94. Rudge, P., 1989, HTLV-1 and neurological disease, Curr. Opin. Neurol. Neurosurg. 2:195.Google Scholar
  95. Sarin, P. S., Rodgers-Johnson, P., Sun, D. K., Thornton, A. H., Morgan, O. S. C., Gibbs, W. N., Mora, C., McKhann, G. I., Gajdusek, D. C., and Gibbs, C. J. J., 1989, Comparison of a human T-cell lymphotropic virus type I strain from cerebrospinal fluid of a Jamaican patient with tropical spastic paraparesis with a prototype human T-cell lymphotropic virus type I, Proc. Natl. Acad. Sci. USA 86:2021.PubMedCrossRefGoogle Scholar
  96. Schwaller, M., Smith, G. E., Skehel, J. J., and Wiley, D. C., 1989, Studies with crosslinking reagents on the oligomeric structure of the env glycoprotein of HIV, Virology 172:367.CrossRefGoogle Scholar
  97. Schwartz, S., Felber, B. K., Fenyo, E.-M., and Pavlakis, G. N., 1990, Env and vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs, J. Virol. 64:5448.PubMedGoogle Scholar
  98. Smith, T. F., Srinivasan, A., Schochetman, G., Marcus, M., and Myers, G., 1988, The phylogenetic history of immunodeficiency viruses, Nature 333:573.PubMedCrossRefGoogle Scholar
  99. Sonigo, P., Barker, C., Hunter, E., and Wain-Hobson, S., 1986, Nucleotide sequence of Mason-Pfizer monkey virus: An immunosuppressive D-type retrovirus, Cell 45:375.PubMedCrossRefGoogle Scholar
  100. Stoye, J. P., and Coffin, J. M., 1985, Endogenous viruses, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 357–404, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  101. Tanese, N., and Goff, S. P., 1988, Domain structure of the Moloney murine leukemia virus reverse transcriptase: Mutational analysis and separate expression of the DNA polymerase and RNase H activities, Proc. Natl. Acad. Sci. USA 85:1777.PubMedCrossRefGoogle Scholar
  102. Teich, N., 1982, Taxonomy of retroviruses, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 25–208, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  103. Teich, N., 1985, Taxonomy of retroviruses, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 1–16, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  104. Thayer, R. M., Power, M. D., Bryant, M. L., Gardner, M. B., Barr, P. J., and Luciw, P. A., 1987, Sequence relationships of type D retroviruses which cause simian acquired immunodeficiency syndrome, Virology 157:317.PubMedCrossRefGoogle Scholar
  105. Varmus, H. E., 1987, Reverse transcription, Sci. Am. 257:56.PubMedCrossRefGoogle Scholar
  106. Varmus, H., 1988, Retroviruses, Science 240:1427.PubMedCrossRefGoogle Scholar
  107. Varmus, H. E., and Swanstrom, R., 1985, Replication of retroviruses, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 74–134, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  108. Vogt, M., Haggblom, C., Swift, S., and Haas, M., 1986, Specific sequences of the env gene determine the host range of two HC-negative viruses of the Rauscher virus complex, Virology 154:420.PubMedCrossRefGoogle Scholar
  109. Watanabe, S., and Temin, H. M., 1982, Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5’ long terminal repeat and the start of the gag gene, Proc. Natl. Acad. Sci. USA 79:5986.PubMedCrossRefGoogle Scholar
  110. Weber, I. T., Miller, M., Jaskolski, M., Leis, J., Skalka, A. M., and Wlodawer, A., 1989, Molecular modeling of the HIV-1 protease and its substrate binding site, Science 243:928.PubMedCrossRefGoogle Scholar
  111. Weiss, R. A., 1982, Experimental biology and assay of RNA tumor viruses, in: RNA Tumor Viruses (R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds.), pp. 209–260, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  112. Weiss, R., Teich, N., Varmus, H., and Coffin, J., 1985, RNA Tumor Viruses, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  113. Willis, J. W., and Craven, R. C., 1991, Form, function and use of retroviral gag proteins, AIDS 5:639.CrossRefGoogle Scholar
  114. Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B. K., Baldwin, E., Weber, I. T., Selk, L. M., Clawson, L., Schneider, J., and Kent, S. B. H., 1989, Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease, Science 245:616.PubMedCrossRefGoogle Scholar
  115. Yanagawa, S.-I, Muakami, A., and Tanaka, H., 1990, Extra mouse mammary tumor pro-viruses in DBA/2 mouse lymphomas acquire a selective advantage in lymphocytes by alteration in the U3 region of the long terminal repeat, Virol. 64:2472.Google Scholar
  116. Yang, Y., Tojo, A., Watanabe, N., and Amanuma, H., 1990, Oligomerization of Friend spleen focus-forming virus (SFFV) env glycoproteins, Virology 177:312–316.PubMedCrossRefGoogle Scholar
  117. Yoshinaka, Y., Katoh, I., Copeland, T. D., and Oroszlan, S. J., 1985, Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon, Proc. Natl. Acad. Sci. USA 82:1618.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • John M. Coffin
    • 1
  1. 1.Department of Molecular Biology and MicrobiologyTufts University School of MedicineBostonUSA

Personalised recommendations