On the Prediction of Thermal Conductivity of Gas Mixtures at Low Temperatures

  • W. Sheng
  • B. C.-Y. Lu
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 37)

Abstract

Thermal conductivity of pure gases were correlated by means of an extended form of the modified Enskog theory together with a modified volume-translated Peng-Robinson equation of state at low temperatures and at pressures up to 370 bar. Two different approaches were used in the correlation. A substance and temperature dependent parameter was introduced in both correlations. The pure-component parameters thus obtained were used to predict the thermal conductivity of five binary mixtures (Ar-He, Ar-N2, Ar-Ne, He-N2 and N2-Ne) without using any binary adjustable parameters with various degrees of success.

Keywords

Methane Argon Helium Compressibility Neon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.C. Reid, J.M. Prausnitz and B.E. Poling, “The properties of gases and liquids”, 4th ed., McGraw-Hill, New York (1987).Google Scholar
  2. 2.
    W. Sheng and B.C.-Y. Lu, Calculation of shear viscosity of mixtures by mean of equation of state, in “Advances in Cryogenic Engineering”, Vol. 35, Plenum Press, New York (1990), p. 1533.Google Scholar
  3. 3.
    W. Sheng and B.C.-Y. Lu, A modified volume-translated Peng-Robinson equation with temperature dependent parameters, Fluid Phase Equilib., 56: 71 (1990).CrossRefGoogle Scholar
  4. 4.
    C. Chapman and T.C. Cowling, “The mathematical theory of non-uniform gases”, 3rd ed., chapter 16, Cambridge Univ. Press, London (1970).Google Scholar
  5. 5.
    Y. Adachi, H. Sugie and B.C.-Y. Lu, Temperature dependence of the cohesion parameter for calculating binary VLE values for systems containing helium and neon, in: “Advances in Cryogenic Engineering”. Vol. 33, Plenum Press, New York (1988), p. 1031.CrossRefGoogle Scholar
  6. 6.
    G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci., 27: 1197 (1972).CrossRefGoogle Scholar
  7. 7.
    Y. Cohen and S.I. Sandier, The viscosity and thermal conductivity of simple dense gases, Ind. Eng. Chem. Fundam., 19: 186 (1980).CrossRefGoogle Scholar
  8. 8.
    W. Sheng, G.J. Chen and H.C. Lu, Prediction of transport properties of dense gases and liquids by the Peng-Robinson (PR) equation of state, Int. J. Thermophys., 10: 133, (1989).CrossRefGoogle Scholar
  9. 9.
    N.B., Vargaftik, “Tables on the thermophysical properties of liquids and gases”, 2nd ed., Hemispheres, Washington, DC (1975).Google Scholar
  10. 10.
    D.G. Friend, J.F. Ely and H. Ingham, Thermal physical properties of methane, J. Phys. Chem. Ref. Data 18:583 (1989).CrossRefGoogle Scholar
  11. 11.
    J. Millat, M.J. Ross and W.A. Wakeham, Thermal conductivity of nitrogen in the temperature range 177 to 270K, Physica 159A:28 (1989).Google Scholar
  12. 12.
    U.V. Mardolcar, C.A. Nieto de Castro and W.A. Wakeham, Thermal conductivity of argon in the temperature range 107 to 423 K, Int. J. Thermophys. 7:259 (1986).CrossRefGoogle Scholar
  13. 13.
    J.V. Sengers, W.T. Bolk and C.J. Stigter, The thermal conductivity of neon between 25–75°C at pressure up to 2600 atm, Physica 30:1018 (1964).CrossRefGoogle Scholar
  14. 14.
    K. Stephan and Heckenbcrger, “Thermal conductivity and viscosity data of fluid mixtures”, Dcchema Chemistry Data Series, Vol. X., Part 1, Frankfurt (1989).Google Scholar
  15. 15.
    M. Yorizane, S. Yoshimura, H. Masuoka and H. Yoshida, Thermal Conductivity of binary gas mixtures at high pressures: N2-O2, N2-Ar CO2-Ar and CO2-CH4 Ind. Eng. Chem. Fundam. 22:458 (1983).CrossRefGoogle Scholar
  16. 16.
    R.D. Fleeter, J. Kestin and R. Paul, The thermal conductivity of mixtures of nitrogen with four noble gases at room temperature, Physica 108 A: 371 (1981)Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • W. Sheng
    • 1
  • B. C.-Y. Lu
    • 1
  1. 1.Department of Chemical EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations