Skip to main content

On the Prediction of Thermal Conductivity of Gas Mixtures at Low Temperatures

  • Chapter
  • 439 Accesses

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 37))

Abstract

Thermal conductivity of pure gases were correlated by means of an extended form of the modified Enskog theory together with a modified volume-translated Peng-Robinson equation of state at low temperatures and at pressures up to 370 bar. Two different approaches were used in the correlation. A substance and temperature dependent parameter was introduced in both correlations. The pure-component parameters thus obtained were used to predict the thermal conductivity of five binary mixtures (Ar-He, Ar-N2, Ar-Ne, He-N2 and N2-Ne) without using any binary adjustable parameters with various degrees of success.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.C. Reid, J.M. Prausnitz and B.E. Poling, “The properties of gases and liquids”, 4th ed., McGraw-Hill, New York (1987).

    Google Scholar 

  2. W. Sheng and B.C.-Y. Lu, Calculation of shear viscosity of mixtures by mean of equation of state, in “Advances in Cryogenic Engineering”, Vol. 35, Plenum Press, New York (1990), p. 1533.

    Google Scholar 

  3. W. Sheng and B.C.-Y. Lu, A modified volume-translated Peng-Robinson equation with temperature dependent parameters, Fluid Phase Equilib., 56: 71 (1990).

    Article  CAS  Google Scholar 

  4. C. Chapman and T.C. Cowling, “The mathematical theory of non-uniform gases”, 3rd ed., chapter 16, Cambridge Univ. Press, London (1970).

    Google Scholar 

  5. Y. Adachi, H. Sugie and B.C.-Y. Lu, Temperature dependence of the cohesion parameter for calculating binary VLE values for systems containing helium and neon, in: “Advances in Cryogenic Engineering”. Vol. 33, Plenum Press, New York (1988), p. 1031.

    Chapter  Google Scholar 

  6. G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci., 27: 1197 (1972).

    Article  CAS  Google Scholar 

  7. Y. Cohen and S.I. Sandier, The viscosity and thermal conductivity of simple dense gases, Ind. Eng. Chem. Fundam., 19: 186 (1980).

    Article  CAS  Google Scholar 

  8. W. Sheng, G.J. Chen and H.C. Lu, Prediction of transport properties of dense gases and liquids by the Peng-Robinson (PR) equation of state, Int. J. Thermophys., 10: 133, (1989).

    Article  CAS  Google Scholar 

  9. N.B., Vargaftik, “Tables on the thermophysical properties of liquids and gases”, 2nd ed., Hemispheres, Washington, DC (1975).

    Google Scholar 

  10. D.G. Friend, J.F. Ely and H. Ingham, Thermal physical properties of methane, J. Phys. Chem. Ref. Data 18:583 (1989).

    Article  CAS  Google Scholar 

  11. J. Millat, M.J. Ross and W.A. Wakeham, Thermal conductivity of nitrogen in the temperature range 177 to 270K, Physica 159A:28 (1989).

    Google Scholar 

  12. U.V. Mardolcar, C.A. Nieto de Castro and W.A. Wakeham, Thermal conductivity of argon in the temperature range 107 to 423 K, Int. J. Thermophys. 7:259 (1986).

    Article  CAS  Google Scholar 

  13. J.V. Sengers, W.T. Bolk and C.J. Stigter, The thermal conductivity of neon between 25–75°C at pressure up to 2600 atm, Physica 30:1018 (1964).

    Article  CAS  Google Scholar 

  14. K. Stephan and Heckenbcrger, “Thermal conductivity and viscosity data of fluid mixtures”, Dcchema Chemistry Data Series, Vol. X., Part 1, Frankfurt (1989).

    Google Scholar 

  15. M. Yorizane, S. Yoshimura, H. Masuoka and H. Yoshida, Thermal Conductivity of binary gas mixtures at high pressures: N2-O2, N2-Ar CO2-Ar and CO2-CH4 Ind. Eng. Chem. Fundam. 22:458 (1983).

    Article  CAS  Google Scholar 

  16. R.D. Fleeter, J. Kestin and R. Paul, The thermal conductivity of mixtures of nitrogen with four noble gases at room temperature, Physica 108 A: 371 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sheng, W., Lu, B.CY. (1992). On the Prediction of Thermal Conductivity of Gas Mixtures at Low Temperatures. In: Fast, R.W. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3368-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3368-9_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6486-3

  • Online ISBN: 978-1-4615-3368-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics