Advertisement

New Aspects of the Intermediates, Catalytic Components and the Regulation of the C5 -Pathway to Chlorophyll

  • D. Dörnemann
Part of the Nato ASI Series book series (NSSA, volume 226)

Abstract

Tetrapyrroles occur in all kinds of living cells as hemes, cytochromes, prosthetic groups of various enzymes and chlorophylls. Among tetrapyrrols chlorophylls represent the quantitatively biggest group. About 1.6 x 109 t of this compound are biosynthesized per year by plants, algae and cyanobacteria1).

Keywords

Levulinic Acid Chlorophyll Biosynthesis Euglena Gracilis Scenedesmus Obliquus Anabaena Variabilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A.F. Hendry, J.D. Houghton and S.B. Brown, The degradation of chlorophyll — a biological enigma, New Phytol. 107: 255 (1987).CrossRefGoogle Scholar
  2. 2.
    G. Kikuchi, A. Kumar, P. Talmage and D. Shemin, The enzymatic synthesis of δ-aminolevulinic acid, J. Biol. Chem. 233: 1214 (1958).PubMedGoogle Scholar
  3. 3.
    S.I. Beale and P.A. Castelfranco, The biosynthesis of δ-aminolevulinic acid in higher plants II. Formation of 14C-δ-aminolevulinic acid from labelled precursors in greening plant tissues, Plant Physiol 53: 297 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    T. Oh-hama, H. Seto, N. Otake and S. Miyachi, 13C-NMR-evidence for the pathway of chlorophyll biosynthesis in green algae, Biochem. Biophys. Res. Commun. 105: 647 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    R.J. Porra, O. Klein and P.E. Wright, The proof by 13C-NMR-spectroscopy of the predominance of the C5-pathway over the Shemin-pathway in chlorophyll biosynthesis in higher plants and of the formation of the methylester group of the chlorophyll from glycine, Eur. J. Biochem. 130: 509 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    Y.J. Avissar, Biosynthesis of 5-aminolevulinate from glutamate in Anabaena variabilis, Biochim. Biophys. Acta 613: 220 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    J.D. Weinstein and S.J. Beale, Biosynthesis of protoheme and heme a precursors solely from glutamate in the unicellular red alga Cyanidium caldarium, Plant Physiol. 74: 146 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    Y.J. Avissar, J.G. Ormerod and S.I. Beale, Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups, Arch. Microbiol. 151: 513 (1989).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Oh-hama, H. Seto and S. Miyachi, 13C-NMR evidence of bacteriochlorophyll a formation by the C5-path way in Chromatium, Arch. Biochem. Biophys. 246: 192 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Oh-hama, N.H. Stotowich and A.I. Scott, 5-Aminolevulinic acid formation from glutamate via the C5-pathway in Clostridium thermoaceticum, FEBS Lett. 228: 89 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    H.C. Friedman, R.K. Thauer, S.P. Gough and CG. Kannangara, δ-Aminolevulinic acid formation in the archaebacterium Methanobacterium thermoautotrophicum requires tRNAglu, Carlsberg Res. Commun. 52: 363 (1987).CrossRefGoogle Scholar
  12. 12.
    G.P. O’Neill, M.-W. Chen and D. Söll, δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA, FEMS Microbiol. Lett. 60: 255 (1989).Google Scholar
  13. 13.
    B. Grimm, A. Bull and V. Breu, Structural genes of glutamate-1-semialdehyde ami-notransferase for porphyrin synthesis in a cyanobacterium and Escherichia coli, Mol. Gen. Genet. 255: 1 (1991).Google Scholar
  14. 14.
    C.G. Kannangara and S.P. Gough, Biosynthesis of δ-aminolevulinate in greening barley leaves. Glutamate-1-semialdehyde aminotransferase, Carlsberg Res. Commun. 43: 185 (1978).CrossRefGoogle Scholar
  15. 15.
    W.Y. Wang, S.P. Gough and C.G. Kannangara, Biosynthesis of δ-aminolevulinate in greening barley leaves. IV. Isolation of three soluble enzymes required for the conversion of glutamate to δ-aminolevulinate, Carlsberg Res. Commun. 46: 243 (1981).CrossRefGoogle Scholar
  16. 16.
    O. Klein and H. Senger, Two biosynthestic pathways to δ-aminolevulinic acid in a pigment mutant of the green alga Scenedesmus obliquus, Plant Physiol. 62: 10 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    V. Breu and D. Dörnemann, Formation of 5-aminolevulinate via glutamate-1-semialdehyde and 4, 5-dioxovalerate with participation of an RNA component in Scenedesmus obliquus mutant C-2A’, Biochim. Biophys. Acta 967: 135 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    J.D. Weinstein and S.I. Beale, RNA is required for enzymatic conversion of glutamate to δ-aminolevulinate by extracts of Chlorella vulgaris, Arch. Biochem. Biophys. 239: 87 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    D.-D. Huang and W.-Y. Wang, Chlorophyll synthesis in Chlamydomonas starts with the formation of glutamyl-tRNA, J. Biol. Chem. 261: 13451 (1986).PubMedGoogle Scholar
  20. 20.
    J.D. Houghton, S.B. Brown, S.P. Gough and C.G. Kannangara, Biosynthesis of δ-aminolevulinate in Cyanidium caldarium: Characterization of tRNAglu, ligase, dehydrogenase and glutamate-1-semialdehyde aminotransferase, Carlsberg Res. Commun. 54: 131 (1989).CrossRefGoogle Scholar
  21. 21.
    J.D. Weinstein and S.I. Beale, Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis, J. Biol. Chem. 258: 6799 (1983).PubMedGoogle Scholar
  22. 22.
    R.J. Porra, R. Barnes and O.T.G. Jones, The level and subcellular distribution of 5-aminolevulinate synthetase activity in semi-anaerobic yeast, Hoppe-Sevler’s Z. Physiol. Chem. 353: 1365 (1972).Google Scholar
  23. 23.
    D. Shemin, C.-S. Russell and T. Abramsky, The succinate-glycine cycle. I. Mechanism of pyrrole synthesis, J. Biol. Chem. 215: 613 (1955).PubMedGoogle Scholar
  24. 24.
    W. Rüdiger and S. Schoch, Chlorophylls, in: “Plant Pigments”, T.W. Goodwin, ed., Academic Press, London, San Diego (1988).Google Scholar
  25. 25.
    S.I. Beale and J.D. Weinstein, Tetrapyrrole metabolism in photosynthetic organisms, in: “Biosynthesis of heme and chlorophylls”, H.A. Dailey, ed., McGraw-Hill, New York (1989).Google Scholar
  26. 26.
    S.I. Beale, Biosynthesis of the tetrapyrrole pigment precursor, δ-aminolevulinic acid, from glutamate, Plant Physiol. 93: 1273 (1990).PubMedCrossRefGoogle Scholar
  27. 27.
    C.G. Kannangara, S.P. Gough, P. Bruyant, J.K. Hoober, A. Kahn and D. V. Wettstein, tRNAglu as a cofactor in δ-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis, TIBS 13: 139 (1988).PubMedGoogle Scholar
  28. 28.
    S. Rieble and S.I. Beale, Enzymatic transformation of glutamate to δ-aminolevulinic acid by soluble extracts of Synechocystis sp. 6803 and other oxygenic procaryotes, J. Biol. Chem. 263: 8864 (1988).PubMedGoogle Scholar
  29. 29.
    A. Schön, G. Krupp, S.P. Gough, S. Berry-Lowe and C.G. Kannangara, The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA, Nature 322: 281 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    A. Schön, C. Kannangara, S.P. Gough and D. Söll, Protein biosynthesis in organelles requires misacylation of tRNA, Nature 331: 187 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    M.W. Chen, D. Jahn, G.P. O’Neill and D. Söll, Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in the δ-aminolevulinic acid formation during chlorophyll biosynthesis, J. Biol. Chem. 265: 4058 (1990).PubMedGoogle Scholar
  32. 32.
    W.-Y. Wang, D.-D. Huang, T.-E. Chang, D. Stachon and B. Wegmann, Regulation of chlorophyll biosynthesis. Genetics and biochemistry of δ-aminolevulinate synthesis, in: “Progress in photosynthesis research”, J. Bigginsed., Martinus Nijhoff Publinshers, Dordrecht (1987).Google Scholar
  33. 33.
    B. Grimm, A. Bull, K.G. Welinder, S.P. Gough and C.G. Kannangara, Purification of the glutamate-1-semialdehyde aminotransferase of barley and Synechococcus, Carlsberg Res. Commun. 54: 67 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    D. Jahn, M.W. Chen and D. Söll, Purification and functional characterization of gluta-myl-l-semialdehyd aminotransferase from Chlamydomonas reinhardtii, J. Biol. Chem. 266: 1611 (1991).Google Scholar
  35. 35.
    D. Dörnemann, K. Kotzabasis, P. Richter, V. Breu and H. Senger, The regulation of chlorophyll biosynthesis by the action of protochlorophyllide onglutRNA-ligase, Bot. Acta 102: 112 (1989).Google Scholar
  36. 36.
    K. Kotzabasis, V. Breu and D. Dörnemann, The inhibitory effect of 4,5-dioxovalerate on 5-aminolevulinate dehydratase and its implication in the regulation of light-dependent chlorophyll formation in pigment mutant C-2A’ of Scenedesmus obliquus, Biochim. Biophys. Acta 977: 309 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • D. Dörnemann
    • 1
  1. 1.FB Biologie/BotanikPhilipps-Universität Marburg LahnbergeMarburgGermany

Personalised recommendations