Skip to main content

New Aspects of the Intermediates, Catalytic Components and the Regulation of the C5 -Pathway to Chlorophyll

  • Chapter
Regulation of Chloroplast Biogenesis

Part of the book series: Nato ASI Series ((NSSA,volume 226))

Abstract

Tetrapyrroles occur in all kinds of living cells as hemes, cytochromes, prosthetic groups of various enzymes and chlorophylls. Among tetrapyrrols chlorophylls represent the quantitatively biggest group. About 1.6 x 109 t of this compound are biosynthesized per year by plants, algae and cyanobacteria1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A.F. Hendry, J.D. Houghton and S.B. Brown, The degradation of chlorophyll — a biological enigma, New Phytol. 107: 255 (1987).

    Article  CAS  Google Scholar 

  2. G. Kikuchi, A. Kumar, P. Talmage and D. Shemin, The enzymatic synthesis of δ-aminolevulinic acid, J. Biol. Chem. 233: 1214 (1958).

    PubMed  CAS  Google Scholar 

  3. S.I. Beale and P.A. Castelfranco, The biosynthesis of δ-aminolevulinic acid in higher plants II. Formation of 14C-δ-aminolevulinic acid from labelled precursors in greening plant tissues, Plant Physiol 53: 297 (1974).

    Article  PubMed  CAS  Google Scholar 

  4. T. Oh-hama, H. Seto, N. Otake and S. Miyachi, 13C-NMR-evidence for the pathway of chlorophyll biosynthesis in green algae, Biochem. Biophys. Res. Commun. 105: 647 (1982).

    Article  PubMed  CAS  Google Scholar 

  5. R.J. Porra, O. Klein and P.E. Wright, The proof by 13C-NMR-spectroscopy of the predominance of the C5-pathway over the Shemin-pathway in chlorophyll biosynthesis in higher plants and of the formation of the methylester group of the chlorophyll from glycine, Eur. J. Biochem. 130: 509 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. Y.J. Avissar, Biosynthesis of 5-aminolevulinate from glutamate in Anabaena variabilis, Biochim. Biophys. Acta 613: 220 (1980).

    Article  PubMed  CAS  Google Scholar 

  7. J.D. Weinstein and S.J. Beale, Biosynthesis of protoheme and heme a precursors solely from glutamate in the unicellular red alga Cyanidium caldarium, Plant Physiol. 74: 146 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. Y.J. Avissar, J.G. Ormerod and S.I. Beale, Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups, Arch. Microbiol. 151: 513 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. T. Oh-hama, H. Seto and S. Miyachi, 13C-NMR evidence of bacteriochlorophyll a formation by the C5-path way in Chromatium, Arch. Biochem. Biophys. 246: 192 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. T. Oh-hama, N.H. Stotowich and A.I. Scott, 5-Aminolevulinic acid formation from glutamate via the C5-pathway in Clostridium thermoaceticum, FEBS Lett. 228: 89 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. H.C. Friedman, R.K. Thauer, S.P. Gough and CG. Kannangara, δ-Aminolevulinic acid formation in the archaebacterium Methanobacterium thermoautotrophicum requires tRNAglu, Carlsberg Res. Commun. 52: 363 (1987).

    Article  Google Scholar 

  12. G.P. O’Neill, M.-W. Chen and D. Söll, δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA, FEMS Microbiol. Lett. 60: 255 (1989).

    CAS  Google Scholar 

  13. B. Grimm, A. Bull and V. Breu, Structural genes of glutamate-1-semialdehyde ami-notransferase for porphyrin synthesis in a cyanobacterium and Escherichia coli, Mol. Gen. Genet. 255: 1 (1991).

    Google Scholar 

  14. C.G. Kannangara and S.P. Gough, Biosynthesis of δ-aminolevulinate in greening barley leaves. Glutamate-1-semialdehyde aminotransferase, Carlsberg Res. Commun. 43: 185 (1978).

    Article  CAS  Google Scholar 

  15. W.Y. Wang, S.P. Gough and C.G. Kannangara, Biosynthesis of δ-aminolevulinate in greening barley leaves. IV. Isolation of three soluble enzymes required for the conversion of glutamate to δ-aminolevulinate, Carlsberg Res. Commun. 46: 243 (1981).

    Article  CAS  Google Scholar 

  16. O. Klein and H. Senger, Two biosynthestic pathways to δ-aminolevulinic acid in a pigment mutant of the green alga Scenedesmus obliquus, Plant Physiol. 62: 10 (1978).

    Article  PubMed  CAS  Google Scholar 

  17. V. Breu and D. Dörnemann, Formation of 5-aminolevulinate via glutamate-1-semialdehyde and 4, 5-dioxovalerate with participation of an RNA component in Scenedesmus obliquus mutant C-2A’, Biochim. Biophys. Acta 967: 135 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. J.D. Weinstein and S.I. Beale, RNA is required for enzymatic conversion of glutamate to δ-aminolevulinate by extracts of Chlorella vulgaris, Arch. Biochem. Biophys. 239: 87 (1985).

    Article  PubMed  CAS  Google Scholar 

  19. D.-D. Huang and W.-Y. Wang, Chlorophyll synthesis in Chlamydomonas starts with the formation of glutamyl-tRNA, J. Biol. Chem. 261: 13451 (1986).

    PubMed  CAS  Google Scholar 

  20. J.D. Houghton, S.B. Brown, S.P. Gough and C.G. Kannangara, Biosynthesis of δ-aminolevulinate in Cyanidium caldarium: Characterization of tRNAglu, ligase, dehydrogenase and glutamate-1-semialdehyde aminotransferase, Carlsberg Res. Commun. 54: 131 (1989).

    Article  CAS  Google Scholar 

  21. J.D. Weinstein and S.I. Beale, Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis, J. Biol. Chem. 258: 6799 (1983).

    PubMed  CAS  Google Scholar 

  22. R.J. Porra, R. Barnes and O.T.G. Jones, The level and subcellular distribution of 5-aminolevulinate synthetase activity in semi-anaerobic yeast, Hoppe-Sevler’s Z. Physiol. Chem. 353: 1365 (1972).

    CAS  Google Scholar 

  23. D. Shemin, C.-S. Russell and T. Abramsky, The succinate-glycine cycle. I. Mechanism of pyrrole synthesis, J. Biol. Chem. 215: 613 (1955).

    PubMed  CAS  Google Scholar 

  24. W. Rüdiger and S. Schoch, Chlorophylls, in: “Plant Pigments”, T.W. Goodwin, ed., Academic Press, London, San Diego (1988).

    Google Scholar 

  25. S.I. Beale and J.D. Weinstein, Tetrapyrrole metabolism in photosynthetic organisms, in: “Biosynthesis of heme and chlorophylls”, H.A. Dailey, ed., McGraw-Hill, New York (1989).

    Google Scholar 

  26. S.I. Beale, Biosynthesis of the tetrapyrrole pigment precursor, δ-aminolevulinic acid, from glutamate, Plant Physiol. 93: 1273 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. C.G. Kannangara, S.P. Gough, P. Bruyant, J.K. Hoober, A. Kahn and D. V. Wettstein, tRNAglu as a cofactor in δ-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis, TIBS 13: 139 (1988).

    PubMed  CAS  Google Scholar 

  28. S. Rieble and S.I. Beale, Enzymatic transformation of glutamate to δ-aminolevulinic acid by soluble extracts of Synechocystis sp. 6803 and other oxygenic procaryotes, J. Biol. Chem. 263: 8864 (1988).

    PubMed  CAS  Google Scholar 

  29. A. Schön, G. Krupp, S.P. Gough, S. Berry-Lowe and C.G. Kannangara, The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA, Nature 322: 281 (1986).

    Article  PubMed  Google Scholar 

  30. A. Schön, C. Kannangara, S.P. Gough and D. Söll, Protein biosynthesis in organelles requires misacylation of tRNA, Nature 331: 187 (1988).

    Article  PubMed  Google Scholar 

  31. M.W. Chen, D. Jahn, G.P. O’Neill and D. Söll, Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in the δ-aminolevulinic acid formation during chlorophyll biosynthesis, J. Biol. Chem. 265: 4058 (1990).

    PubMed  CAS  Google Scholar 

  32. W.-Y. Wang, D.-D. Huang, T.-E. Chang, D. Stachon and B. Wegmann, Regulation of chlorophyll biosynthesis. Genetics and biochemistry of δ-aminolevulinate synthesis, in: “Progress in photosynthesis research”, J. Bigginsed., Martinus Nijhoff Publinshers, Dordrecht (1987).

    Google Scholar 

  33. B. Grimm, A. Bull, K.G. Welinder, S.P. Gough and C.G. Kannangara, Purification of the glutamate-1-semialdehyde aminotransferase of barley and Synechococcus, Carlsberg Res. Commun. 54: 67 (1989).

    Article  PubMed  CAS  Google Scholar 

  34. D. Jahn, M.W. Chen and D. Söll, Purification and functional characterization of gluta-myl-l-semialdehyd aminotransferase from Chlamydomonas reinhardtii, J. Biol. Chem. 266: 1611 (1991).

    Google Scholar 

  35. D. Dörnemann, K. Kotzabasis, P. Richter, V. Breu and H. Senger, The regulation of chlorophyll biosynthesis by the action of protochlorophyllide onglutRNA-ligase, Bot. Acta 102: 112 (1989).

    Google Scholar 

  36. K. Kotzabasis, V. Breu and D. Dörnemann, The inhibitory effect of 4,5-dioxovalerate on 5-aminolevulinate dehydratase and its implication in the regulation of light-dependent chlorophyll formation in pigment mutant C-2A’ of Scenedesmus obliquus, Biochim. Biophys. Acta 977: 309 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dörnemann, D. (1992). New Aspects of the Intermediates, Catalytic Components and the Regulation of the C5 -Pathway to Chlorophyll. In: Argyroudi-Akoyunoglou, J.H. (eds) Regulation of Chloroplast Biogenesis. Nato ASI Series, vol 226. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3366-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3366-5_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6485-6

  • Online ISBN: 978-1-4615-3366-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics