Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 287))

  • 133 Accesses

Abstract

There exists an intensive effort to design specific wave patterns in classical fields as well as in quantum chemistry 1–9. In particular, there are a number of physical situations such as internal material diagnostics and modifications10 where it would be useful to produce a specified acoustic wave structure within a solid by applying a pattern of forces on the solid’s surface. The surface loads are created by using lasers, electron beams as well as through transducer arrays 11–15, Waves in a solid are of two types as compressional and shear waves with respectively longitudinal and transverse propagation character. This added complexity offers in fact an additional flexibility for achieving a desired output. The design of a surface load pattern in both space and time for the coherent focusing of waves at a prescribed target volume at a prescribed time is studied in this paper. Posed in this manner, such a design is an inverse problem. In general, the guessing of the input surface load to achieve a prescribed wave pattern as output is very complicated and relies heavily on experience and intuition in the absence of a rational design procedure. The proposed scheme provides a rational design procedure to substitute intuition and to achieve constructions where intuition would fail. This is particularly true for generating coherent waves that interfere constructively as well as destructively in specific regions of space.

Presenting author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. N. Brittingham, J. Appl. Phys. 54, 1179 (1983).

    Article  ADS  Google Scholar 

  2. R. W. Ziolkowski, Phys. Rev. A39, 2005(1989).

    MathSciNet  Google Scholar 

  3. R. W. Ziolkowski, D. K. Lewis, B. D. Cook, Phys.Rev. Lett. 62,147 (1989).

    Article  ADS  Google Scholar 

  4. P.Hillion, J. Appl.Phys 60, 2981 (1986); J. Math.Phys.28,1743 (1987).

    Google Scholar 

  5. T. T. Wu,J. Appl.Phys. 57, 2370 (1985); T.T. Wu, R.W.P. King and H.-M. Shen, J. Appl. Phys. 62, 4036 (1987).

    Google Scholar 

  6. J. Durnin, J. Opt. Soc. Am. A4, 651 (1987); J. Durnin, J. J. Miceli, Jr. and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).

    Google Scholar 

  7. H. E. Moses, J. Math. Phys. 25, 1905 (1984); H. E. Moses and R.T. Prosser, IEEE Trans. Antenna Propag. AP-34, 188 (1988).

    Google Scholar 

  8. E. Heyman and L.P. Felsen, IEEE Trans. Antenna Propag. AP-34, 1602 (1986); E. Heyman and B. Z. Steinberg, J. Opt. Soc.Am.A4, 473 (1987); E. Heyman, B. Z. Steinberg and L. P. Felsen, J. Opt. Soc. Am. A4,2801 (1987).

    Google Scholar 

  9. S S. Shi, A. Woody, H. Rabitz, J. Chem. Phys. 88, 6870 (1988).

    Article  ADS  Google Scholar 

  10. F. R. Breckenbridge, C. E. Tschiegg and M. Greenspan, J. Acoust. Soc. Am.57, 626 (1975); N. N. Hsu and S. C. Hardy, xxx in Elastic Waves and Non-Destructive Testing, Edited by Y. H. Pao (ASME, New York, 1978), pp. 85–106; For rewiev, see, e.g., R. B. Thompson, ASME J. Appl. Mech. 50, 1191 (1983).

    Google Scholar 

  11. H. W. Jones and H. W. Kwan, Ultrasonics 23, 63 (1985).

    Article  ADS  Google Scholar 

  12. C. B. Scruby, R. J. Dewhurst, D. A. Hutchins and S. B. Palmer, J. Appl.Phys. 51, 6210 (1980); R. J. Dewhurst, D. A. Hutchins, S. B. Palmer and C. B. Scruby, J. Appl. Phys. Lett. 38, 677 (1981); J. Appl. Phys. 53, 4064 (1982).

    Google Scholar 

  13. R. M. White, J. Appl. Phys. 34, 3559 (1963); J. E. Sinclair, J. Phys.D: Appl. Phys. 12, 1309 (1979); L. R. F. Rose, J.,Acoust. Soc. Am. 75,723 (1984).

    Google Scholar 

  14. R. R. Boade and O. L. Burchett, J. Appl. Phys. 47, 3412 (1976); L. J. Balk, Can. J. Phys. 64, 1238 (1986).

    Google Scholar 

  15. A. J. A. Bruinsma, J. A. Vogel, Appl. Opt. 27, 4690 (1988).

    Article  ADS  Google Scholar 

  16. D. G. Luenberger, “Introduction to Dynamical Systems: Theory, Models and Applications,” [Wiley, New York, 1979]; A. Bryson and Y. Ho, Applied Optimal Control, Blaisdell, Waltham, Mass. (1969)

    Google Scholar 

  17. A. C. Eringen, Mechanics of Continua John Wiley and Sons (1967)

    MATH  Google Scholar 

  18. Y. S. Kim, H. Rabitz, A. Askar, J. B. McManus, “Optimal control of acoustic waves in solids,”Accepted for publication,Phys.Rev.B,1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, Y.S., Rabitz, H., Askar, A., McManus, J.B. (1992). Designing Coherent Acoustic Waves by Optimal Control Theory. In: Bandrauk, A.D., Wallace, S.C. (eds) Coherence Phenomena in Atoms and Molecules in Laser Fields. NATO ASI Series, vol 287. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3364-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3364-1_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6484-9

  • Online ISBN: 978-1-4615-3364-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics