Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 287))

  • 131 Accesses

Abstract

In the traditional view of photoionization of a one-valence-electron atom, the absorption of the photon raises the electron from a bound state into the continuum instantly, so to speak, and irreversibly. There is no characteristic time (analogous to the spontaneous lifetime of a discrete excited state) which we can associate with “how long” the electron “stays” in the continuum energy state to which it was raised. Another side of the same picture is that the dependence of the bound-free matrix element that determines the cross-section on the photon energy is smooth, exhibiting a slow variation originating from the oscillatory behavior of the wavefunctions. It shows no resonance-like structure. The situation changes significantly when the photoabsorption raises two electrons into the continuum. Then we encounter doubly excited discrete states embedded in (degenerate with) the single-electroncontinuum)[1, 2]. The process (at least as long as the field is not too strong) is still irreversible, but there is now a characteristic time which can be viewed as the lifetime of the discrete state that has been formed in the continuum. The dependence of the photoionization cross section on the photon energy is no longer smooth but exhibits maxima and minima reflecting the interference between the amplitudes of the transition to the continuum and discrete parts of the wavefunction. By exciting the appropriate superposition of discrete and continuum wavefunction, we achieve a temporary localization and stabilization of an electron whose energy is above the ionization threshold. These so-called autoionizing states (or resonances) can have lifetimes ranging from less than a pico-second to microseconds, or in rare cases even be metastable against autoionizationl[3], depending on the atom and the configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Fano, Phys. Rev. 124, 1866(1961).

    Article  ADS  MATH  Google Scholar 

  2. W. E. Cooke, T. F. Gallagher, S. A. Edelstein, and R. M. Hill, Phys. Rev. Lett. 40, 178(1978); W. E. Cooke and C. L. Cromer, Phys. Rev. A 32, 2725(1985).

    Google Scholar 

  3. C. A. Nicolaides and D. R. Beck, Phys. Rev. A 17, 2116(1978).

    Article  ADS  Google Scholar 

  4. Yu.I. Heller and A.K. Popov, Soy. J. Quant. Electron. 6, 606(1976).

    Article  ADS  Google Scholar 

  5. Yu.I. Heller and A.K. Popov, Op. Comm. 18, 8 (1976).

    ADS  Google Scholar 

  6. Yu.I. Heller and A.K. Popov, Op. Comm. 18, 449 (1976).

    Article  ADS  Google Scholar 

  7. Yu.I. Heller and A.K. Popov, Zh. Eksp. Teor. Fiz. 78, 506 (1980), [Soy. Phys. JEPT 51, 255 (1980).

    Google Scholar 

  8. Bo-nian Dai and P. Lambropoulos, Phys. Rev. A36, 5205 (1987).

    ADS  Google Scholar 

  9. Yu.I. Heller, V.F. Lukinykh, A.K. Popov and V.V. Slabko, Phys. Lett. A 82, 4 (1981).

    Article  ADS  Google Scholar 

  10. For a review see, for example, P.L. Knight, M.A. Lauder, and B.J. Dalton, Phys. Rep. 190, 1 (1990).

    Google Scholar 

  11. L.I. Pavlov, S.S. Dimov, D.I. Metchkov, G.M. Mileva, and K. V. Stamenov, Phys. Lett. 89A, 441 (1982).

    ADS  Google Scholar 

  12. S.S. Dimov, L.I.Pavlov, and K.V. Stamenov, Appl. Phys. B 30, 35 (1983).

    Article  ADS  Google Scholar 

  13. D. Feldmann, G. Otto, D. Petring and K. H. Welge, J. Phys. B: At. Mol. Phys. 19, 269 (1986).

    Article  ADS  Google Scholar 

  14. M.H.R.Hutchinson and K.M.M. Ness, Phys. Rev. Lett. 60, 105 (1988).

    Article  ADS  Google Scholar 

  15. X. Tang, Anne L’Huillier, and P. Lambropoulos,Phys. Rev. Lett. 62, 111 (1989).

    Article  ADS  Google Scholar 

  16. K.G.H. Baldwin, P.B. Chapple, H.-A. Bachor, J. Zhang and P. Lambropoulos, Nonlinear Optics, Kauai, HI, 16–20 July, 1990; also P. B. Chapple, Ph.D. thesis, Australian National University, (1988), (unpublished).

    Google Scholar 

  17. J. Zhang, P. Lambropoulos, Phys. Rev. A (to be published).

    Google Scholar 

  18. G. Alber and P. Zoller, Phys. Rev. A 26, 1373 (1983).

    Article  ADS  Google Scholar 

  19. V. G. Arkhipkin and Yu. I. Heller, Phys. Lett. 98A,12(1983).

    ADS  Google Scholar 

  20. S. E. Harris, Phys. Rev. Lett. 62,1033(1989).

    Google Scholar 

  21. A. Lyras, X. Tang, P. Lambropoulos, and J. Zhang, Phys. Rev. A 40, 4131(1989).

    Google Scholar 

  22. A.T. Georges, P. Lambropoulos and J.H. Marburger, Phys. Rev. A, 15, 300 (1977), and references therein.

    Article  ADS  Google Scholar 

  23. B. Ritchie, Phys. Rev. A31, 823 (1985).

    ADS  Google Scholar 

  24. M. Edwards, X. Tang, P. Lambropoulos, and R. Shakeshaft, Phys. Rev. A33, 4444(1986).

    ADS  Google Scholar 

  25. T. N. Chang, Phys. Rev. A39, 4946(1989).

    ADS  Google Scholar 

  26. R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, Phys. Rev. Lett. 32, 343(1974).

    Article  ADS  Google Scholar 

  27. J. A. Armstrong, and J. J. Wynne, Phys. Rev. Lett. 33, 1183(1974).

    Article  ADS  Google Scholar 

  28. Lloyd Armstrong, Jr., and Brian Lee Beers, Phys. Rev. Lett. 34, 1290(1975).

    Article  ADS  Google Scholar 

  29. P. Lambropoulos and P. Zoller, Phys. Rev. A 24,379(1981).

    Article  ADS  Google Scholar 

  30. Y. L. Shao, D. Charalambidis, C. Fotakis, J. Zhang and P. Lambropoulos, Phys. Rev. Lett. (submitted).

    Google Scholar 

  31. S. Cavalieri, Manlio Matera, and Francesco Pavone, Phys. Rev. Lett. (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lambropoulos, P., Zhang, J., Tang, X. (1992). Coherent Interactions within the Atomic Continuum. In: Bandrauk, A.D., Wallace, S.C. (eds) Coherence Phenomena in Atoms and Molecules in Laser Fields. NATO ASI Series, vol 287. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3364-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3364-1_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6484-9

  • Online ISBN: 978-1-4615-3364-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics