Advertisement

Interfering Optical Interactions: Phase Sensitive Absorption

  • Ce Chen
  • Yi-Yian Yin
  • A. V. Smith
  • D. S. Elliott
Part of the NATO ASI Series book series (NSSB, volume 287)

Abstract

Interference effects have been especially important in the development of new frontiers in physics. In this paper we will discuss a relatively new type of interference in laser-atom interactions, and our experimental studies of its properties, limitations, and applications1,2. The interference which we have been studying is between different optical processes which can individually lead to the excitation of the same atomic or molecular state. This interference has been identified3–5 as the cause of the suppression of multiphoton excitation of various atomic species when the density of the nonlinear medium is relatively high. The experiments we will discuss here can be extended in many new directions, including studies of propagation effects in nonlinear optical media, control of reaction products in laser induced ionization or dissociation, or control of photoelectron angular distributions.

Keywords

Ionization Signal Focal Region Argon Pressure Delay Cell Focal Length Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ce Chen, Yi-Yian Yin, and D. S. Elliott, Phys. Rev. Lett. 64, 507 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    Ce Chen and D. S. Elliott, Phys. Rev. Lett., 65, 1727 (1990).ADSGoogle Scholar
  3. 3.
    M. G. Payne, W. R. Garrett, and H. C. Baker, Chem. Phys. Lett. 75, 468 (1980); M. G. Payne and W. R. Garrett, Phys. Rev. A 26, 356 (1982); 28, 3409 (1983).Google Scholar
  4. 4.
    D. J. Jackson and J. J. Wynne, Phys. Rev. Lett. 49, 543 (1982); D. J. Jackson, J. J. Wynne, and P. H. Kes, Phys. Rev. A 28, 781 (1983); J. J. Wynne, Phys. Rev. Lett. 52, 751 (1984); in Multiphoton Processes,Proceedings of the Fourth International Conference on Multiphoton Processes, Boulder, CO, 1987, edited by S. J. Smith and P. L. Knight (Cambridge Univ. Press, Cambridge, 1987), p. 318.Google Scholar
  5. 5.
    M. Poirier, Phys. Rev. A 27, 934 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    E. A. Manykin and A. M. Afanas’ev, Zh. Eksp. Teor. Phys. 48, 931 (19650; 52, 1246 (1967) [Soy. Phys. JETP 21, 619 (1965); 25, 828 (1967)].Google Scholar
  7. 7.
    G. L. Gurevich and Yu. G. Khronopulo, Zh. Eksp. Teor. Phys. 51, 1499 (1966) [Soy. Phys. JETP 24,1012 (1967)].Google Scholar
  8. 8.
    K. Aron and P. M. Johnson, J. Chem. Phys. 67, 5099 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    F. H. M. Faisal, R. Wallenstein, H. Zacharias, Phys. Rev. Lett. 39, 1138 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    R. N. Compton, J. C. Miller, and A. E. Carter, Chem. Phys. Lett. 71, 87 (1980); J. C. Miller, R. N. Compton, M. G. Payne, and W. R. Garrett, Phys. Rev. Lett. 45, 114 (1980); J. C. Miller and R N. Compton, Phys. Rev. A 25, 2056 (1982); M. G. Payne, W. R. Garrett, and W. R. Ferrell, Phys. Rev. A 34, 1143 (1986); W. R. Garrett, W. R. Ferrell, M. G. Payne, and J. C. Miller, Phys. Rev. A 34, 1165 (1986).Google Scholar
  11. 11.
    J. H. Glownia and R. K. Sander, Appl. Phys. Lett. 40, 648 (1982); Y. I. Geller and A. V. Shvabouskas, Opt. Spektrosk. 53, 385 (1982) [Opt. Spectrosc. (U.S.S.R.) 53, 227 (1982)]; S. A. Bakhramov, I. Kirin, P.K. Khabibullaev, and N. S. Shaabdurakhmanova, Kvantovaya Elektron. (Moscow) 9, 2386 (1982) [Sov. J. Quantum Electron. 12,1557 (1982)].Google Scholar
  12. 12.
    D. Normand, J. Morellec, and J. Reif, J. Phys. B 16, L277 (1983).CrossRefGoogle Scholar
  13. 13.
    J. H. Glownia and R. K. Sandner, Phys. Rev. Lett. 49, 21 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    M. S. Malcuit, D. J. Gauthier, and R W. Boyd, Phys. Rev. Lett. 55, 1086 (1985)ADSCrossRefGoogle Scholar
  15. R. W. Boyd, M. S. Malcuit, D. J. Gauthier, and K. Rzazewski, Phys. Rev. A 35, 1648 (1987).ADSCrossRefGoogle Scholar
  16. 15.
    S. J. Bajic, R. N. Compton, J. A. D. Stockdale, and D. D. Konowalow, J. Chem. Phys. 89, 7056 (1988).ADSCrossRefGoogle Scholar
  17. 16.
    A. V. Smith, W. J. Alford, G. R. Hadley, J. Opt. Soc. Am. B 5, 1503 (1988).ADSCrossRefGoogle Scholar
  18. 17.
    C. Cuthbertson and M. Cuthbertson, Proc. Roy. Soc 84, 13 (1910); M. Rusch, Annalen der Physik 70, 373 (1923); and B. Quarder, Annalen der Physik 70, 255 (1924).Google Scholar
  19. 18.
    H. G. Muller, P. H. Bucksbaum, D. W. Schumacher and A. Zavriyev, J. Phys. B 23, 2761 (1990).ADSCrossRefGoogle Scholar
  20. 19.
    N. B. Baranova, A. N. Chudihov, and B. Ya. Zeldovich, Opt. Commun. 79, 116 (1990).ADSCrossRefGoogle Scholar
  21. 20.
    M. Shapiro, J. W. Hepburn and P. Brumer, Chem. Phys. Lett. 149, 451 (1988); and C. K. Chan, P. Brumer and M. Shapiro, Phys. Rev. Lett., 64, 3199 (1990), Comments Section.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ce Chen
    • 1
  • Yi-Yian Yin
    • 1
  • A. V. Smith
    • 2
  • D. S. Elliott
    • 1
  1. 1.School of Electrical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations