Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 311))

Summary

A microscope objective and electronic imaging system were used to determine how isolated frog skeletal muscle fibers adjust their volume during an isometric tetanus. Crosssectional area and volume of the middle third of a fiber increased rapidly with the development of active tension, which indicates that contraction produced components of force perpendicular to the long axis. The extreme ends are known to shorten whether or not the middle of a fiber is isometric or stretched. Shortening of the ends may shift water towards the middle, which could account for the volume changes we observed. The cytoskeletal matrices of muscle evidently adjust rapidly during contraction to maintain a dynamic equilibrium between the axial and radial forces that stabilize the whole cell. The Z disks have been shown to expand during active, but not passive, tension development. Z disks might be the elastic elements of the muscle cytoskeleton primarily involved in rapid balancing of the radial components of active force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballard, D. H., and Brown, C. M., 1982, “Computer Vision,” Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Blinks, J. R., 1965, Influence of osmotic strength on cross-section and volume of isolated single muscle fibres, J. Phvsiol. 177, 42.

    CAS  Google Scholar 

  • Blinks, J. R., Rudel, R. and Taylor, S. R., 1978, Calcium transients in isolated amphibian skeletal muscle fibres: Detection with aequorin, J. Phvsiol. 277:291.

    CAS  Google Scholar 

  • Duda, R. O., and Hart, P. E., 1973, Region analysis; extensions, in: “Pattern Classification and Scene Analysis”, John Wiley and Sons, New York, NY.

    Google Scholar 

  • Edman, K. A. P., and Regianni, C., 1984, Redistribution of sarcomere length during isometric contraction of frog muscle fibres and its relation to tension creep. J. Phvsiol., 351:169.

    CAS  Google Scholar 

  • Edman, K. A. P., Reggiani, C., and te Kronnie, G., 1985, Differences in maximum velocity of shortening along single muscle fibres of the frog, J. Physiol., 365:147.

    PubMed  CAS  Google Scholar 

  • Eisenberg, B. R., 1983, Quantitative ultrastructure of mammalian skeletal muscle, in: “Handbook of Physiology: Skeletal Muscle”, American Physiological Society, Bethesda, MD.

    Google Scholar 

  • Funatsu, T., Higuchi, H., and Ishiwata, S., 1990, Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin, J. Cell Biol. 110:53.

    Article  PubMed  CAS  Google Scholar 

  • Goldspink, G., 1983, Alterations in myofibril size and structure during growth, exercise, and changes in environmental temperature, in: “Handbook of Physiology: Skeletal Muscle”, American Physiological Society, Bethesda, MD.

    Google Scholar 

  • Goldstein, M. A., Michael, L. H., Schroeter, J. P., and Sass, R. L., 1988, Structural states in the Z band of skeletal muscle correlate with states of active and passive tension, J. Gen. Physiol. 92:113.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A. M., Huxley, A. F., and Julian, F. J., 1963, Apparatus for mechanical investigations on isolated muscle fibres, J. Phvsiol. 167:42P.

    Google Scholar 

  • Gonzalez, R. C., and Wintz, P., 1987, “Digital Image Processing”, Addison-Wesley Co. Inc., Reading, MA.

    Google Scholar 

  • Howell, J. N., and Oetliker, H., 1987, Effects of repetitive activity, ruthenium red, and elevated extracellular calcium on frog skeletal muscle: implications for t-tubule conduction. Can. J. Physiol. Pharmacol. 65:691.

    Article  PubMed  CAS  Google Scholar 

  • Hoyle, G., 1983, Structural architecture of complete cross-striated sarcomeres, in: “Muscles and Their Neural Control”, John Wiley & Sons, NY.

    Google Scholar 

  • Huxley, A. F., 1980, Uncertainties about “independent force-generators”, in: “Reflections on Muscle,” Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Huxley, A. F., 1988, Prefatory chapter: Muscular contraction, Ann. Rev. Physiol. 50:1.

    Article  CAS  Google Scholar 

  • Huxley, A. F., and Peachey, L. D., 1961, The maximum length for contraction in vertebrate striated muscle, J. Physiol., 156:150.

    PubMed  CAS  Google Scholar 

  • Inoué, S., 1986, Physiological characteristics of the eye, in: “Video Microscopy,” Plenum Press, New York, NY.

    Google Scholar 

  • Lännergren, J., 1989, Volume changes of isolated Xenopus muscle fibres associated with repeated tetanic contractions, J. Physiol., 429:116P.

    Google Scholar 

  • Neering, I. R., Quesenberry, L. A., Morris, V. A., and Taylor, S. R., 1991, Non-uniform volume changes during muscle contraction, Biophys. J., 59:926.

    Article  PubMed  CAS  Google Scholar 

  • Pierobon-Bormioli, S., Betto, R., and Salviati, G., 1989, The organization of titin (connectin) and nebulin in the sarcomeres: an immunocytolocalization study, J. Musc. Res. Cell Motil., 10:446.

    Article  CAS  Google Scholar 

  • Pollack, G. H., 1990, Generators and sustainers: the tension-length relation, in: “Muscles and Molecules: Uncovering the Principles of Biological Motion,” Ebner and Sons, Seattle, WA.

    Google Scholar 

  • Quesenberry, L. A., Morris, V. A., Neering, I. R., and Taylor, S. R., 1991, Reduced defocus degradation in a system for high-speed 3D digital microscopy, Proc. Internatl. Soc. Photo-Optical Instr. Eng. 1428:177.

    Google Scholar 

  • Sato, T. G., 1954, Volume change of a muscle fiber on tetanic contraction, Annot. Zool. JPN. 27:165.

    Google Scholar 

  • Westerblad, H. and Lännergren, J., 1991, Slowing of relaxation during fatigue in single muscle fibres. J. Phvsiol. 434:323.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taylor, S.R., Neering, I.R., Quesenberry, L.A., Morris, V.A. (1992). Volume Changes During Contraction of Isolated Frog Muscle Fibers. In: Frank, G.B., Bianchi, C.P., ter Keurs, H.E.D.J. (eds) Excitation-Contraction Coupling in Skeletal, Cardiac, and Smooth Muscle. Advances in Experimental Medicine and Biology, vol 311. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3362-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3362-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6483-2

  • Online ISBN: 978-1-4615-3362-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics