Advertisement

Mechanisms of Calcium Release from Terminal Cisternae in Crustacean Muscle

  • Eduardo Rojas
  • Verónica Nassar-Gentina
  • Michael E. Pollard
  • Mario Luxoro
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 311)

Abstract

The chain of events leading to the release of Ca2+ from the terminal cisternae of the sarcoplasmic reticulum (SR) in vertebrate twitch skeletal muscle fibers begins with the action potential, which is propagated along the transverse tubular membrane (T tubules). The exact link between membrane potential changes in the T tubules (Heiny & Vergara, 1984) and Ca2+ release from the SR remains unresolved (Frank, 1980) despite the fact that the inward spread of mechanical activation has been measured (Costantin, 1975). Until recently, most of the experimental work on E-C coupling has been interpreted in terms of the direct electro-mechanical coupling hypothesis. In this model charged gating particles (Chandler, Rakowski & Schneider, 1976) control directly the release of Ca2+ from the SR (Hui & Gilly, 1979; Franzini-Armstrong, Block & Ferguson, 1990).

Keywords

Sarcoplasmic Reticulum Skeletal Muscle Fiber Charge Movement Frog Skeletal Muscle Peak Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arispe, N., Olivares, E., Jaimovich, E. & Rojas, E., 1991, Characteristics of Ca2+ release channels from crustacean skeletal muscle, J. Memb. Biol., in press.Google Scholar
  2. Armstrong, C. M., Bezanilla, F. & Horowicz, P., 1972, Twitches in the presence of ethylene glycol bis(ß-aminoethyl ether)-N,N’-tetraacetic acid. Biochim. Biophys. Acta, 267: 605–608.PubMedCrossRefGoogle Scholar
  3. Atwater, I., Rojas, E. & Vergara, J., 1974, Calcium influxes and tension development in perfused single barnacle muscle fibres under membrane potential control, J. Physiol. (London), 243: 523–551.PubMedGoogle Scholar
  4. Bianchi, C. P. & Bolton, T.C., 1967, Action of local anesthetics on coupling systems in muscle, J. Pharmacol. Exp. Ther. 1957: 388–405.Google Scholar
  5. Csernoch, L., Huang, C. L.-H., Szucs, G. & Kovacs, L., 1988, Differential effects of tetracaine on charge movement and Ca2+ signals in frog skeletal muscle, J. Gen. Physiol. 92: 601–612.PubMedCrossRefGoogle Scholar
  6. Chandler, W. K., Rakowski, R.F. & Schneider, M.F., 1976, A non-linear voltage dependent charge movement in frog skeletal muscle. J. Physiol. (London), 254: 245–283.PubMedGoogle Scholar
  7. Costantin, L.L., 1975, Contractile activation in skeletal muscle. Prog. Biophys. Mol. Biol. 29: 197–224.PubMedCrossRefGoogle Scholar
  8. Edwards, G.A., Weiant, E.A., Slocombe, A.G. & Roeder, K.D. (1948), The action of ryanodine on the contractile process in striated muscle. Science 108: 330–332.PubMedCrossRefGoogle Scholar
  9. Franzini-Armstrong, C., Block, B. & Ferguson, D. G., 1990 A molecular architecture of T-SR junctions: Evidence for a junctional complex that directly connects the two membrane systems. In Transduction in Biological Systems. Eds. C. Hidalgo, J. Bacigalupo, E. Jaimovich & J. Vergara, Plenum Press, pp 339–360.CrossRefGoogle Scholar
  10. Frank, G.B., 1980, The current view of the source of calcium in excitation-contraction coupling in vertebrate skeletal muscle. Biochem. Pharmocol. 29: 2399–2406.CrossRefGoogle Scholar
  11. Garcia, J., Avila-Sakar, A.J. & Stefani, E., 1991, Differential effects of ryanodine and tetracaine on charge movement and calcium transients in frog skeletal muscle, J. Physiol (London), 440: 403–417.PubMedGoogle Scholar
  12. Geiner, H., 1968, The role of calcium in excitation-contraction coupling in lobster muscle. J. Gen. Physiol. 52: 88–110.CrossRefGoogle Scholar
  13. Heiny, J. & Vergara, J., 1984. Dichroic behavior of the absorbance signal from dyes NK 2367 and WW 375 in skeletal muscle fibers, J. Gen. Physiol. 84: 805–837.PubMedCrossRefGoogle Scholar
  14. Hidalgo, J., Luxoro, E. & Rojas, E., 1979, On the role of extracellular calcium in triggering contraction in muscle fibres from barnacle under membrane potential control, J. Physiol. (London), 288: 313–330.PubMedGoogle Scholar
  15. Hui, C.S. & Gilly, W.F., 1979, Mechanical activation and voltage-dependent charge movement in stretched muscle fibers. Nature, 281: 223–225.PubMedCrossRefGoogle Scholar
  16. Keynes, R.D., Rojas, E., Taylor, R.E. & Vergara, J., 1973, Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control. J. Physiol. (London), 229: 409–455.PubMedGoogle Scholar
  17. Luxoro, M. & Nassar-Gentina, V., 1984, Potassium-induced depolarizations and generation of tension in barnacle muscle fibers: Effects of external calcium, strontium, and barium. Quart. J. Exp. Physiol. 69: 235–243.Google Scholar
  18. Luxoro, M., Nassar-Gentina, V., Rojas, E., 1990, Excitation-contraction coupling in barnacle muscle fibers: Does calcium entry trigger contraction directly?. In Transduction in Biological Systems, Eds. C. Hidalgo, J. Bacigalupo, E. Jaimovich & J. Vergara, Plenum Press, pp.289–300.CrossRefGoogle Scholar
  19. Rojas, E., Forsberg, E. & Pollard, H.B., 1976, Optical detection of calcium dependent ATP release from stimulated medullary chromaffin cells. Adv. Exptl. Med. and Biol., 211: 7–28.Google Scholar
  20. Rojas, E., Nassar-Gentina, V., Luxoro, M., Pollard, M.E. & Carrasco, M.A., 1987, Inositol 1,4,5-trisphosphate-induced Ca2+ release from the sarcoplasmic reticulum and contraction in crustacean muscle. Can. J. Physiol. Phar. 65: 672–680.CrossRefGoogle Scholar
  21. Suárez-Isla, B.A., Marengo, J.J., Irribarra, V. & Bull, R., 1990, Calcium channels in in sarcoplasmic reticulum membranes isolated from skeletal muscle. In Transduction in Biological Systems, Eds. C. Hidalgo, J. Bacigalupo E. Jaimovich & J. Vergara, pp.487–499.CrossRefGoogle Scholar
  22. Vergara, J. & Caputo, C, 1983, Effects of tetracaine on charge movements and calcium signals in frog skeletal muscle fibers. Proc. Natl. Acad. Sci. (USA) 80: 1477–1481.PubMedCrossRefGoogle Scholar
  23. Vergara, J., Tsien, R. & Delay, M., 1985, Inositol 1,4,5-trisphosphate: a possible chemical link in excitation contraction coupling in muscle. Proc. Natl. Acad. Sci. (USA) 82: 760–772.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Eduardo Rojas
    • 1
    • 2
  • Verónica Nassar-Gentina
    • 1
    • 2
  • Michael E. Pollard
    • 1
    • 2
  • Mario Luxoro
    • 1
    • 2
  1. 1.Laboratory of Cell Biology and GeneticsNIDDK National Institutes of HealthBethesdaUSA
  2. 2.Laboratory of Cell Physiology, Faculty of SciencesUniversity of ChileViña del MarChile

Personalised recommendations