Advertisement

The Significance of Na+ in E-C Coupling in Muscle

  • Vladimir Nesterov
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 311)

Abstract

A great diversity of forms of multicellular organisms having come into being during animal evolution has determined the exclusively structural and functional variety of their muscles differing, particularly, in their mode of activation. In vertebrate twitch muscles a crucial step in excitation- contraction (E-C) coupling concerns the mechanisms whereby the electrical activity of the T-tubular membrane (TTM) induces the release of Ca2+ from the sarcoplasmic reticulum (SR). The investigation of this key question of the E-C coupling has resulted in two principal hypotheses about the nature of the T-SR signal transmission: (i) Ca2+ release from SR triggered by a change in tubular membrane polarization and (ii) Ca2+ release induced by specific chemical transmitter from the T-system.

Keywords

Skeletal Muscle Sarcoplasmic Reticulum Skeletal Muscle Fiber Charge Movement Contraction Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R.H., Chandler, W.K., and Rakowski, R.F., 1976, Charge movement and mechanical repriming in skeletal muscle, J. Physiol. (L.), 254: 351.Google Scholar
  2. Bezamilla, F., and White, M.M., 1986, Properties of Ionic Channels in Excitable Membranes, in: “Physiology of Membrane Disorders”, II ed., T. Andreoli et al., eds. Plenum Med. Book Company, N.Y. and L.Google Scholar
  3. Bridge, J.H.B., Smolley, J.R., Spitzer, K.W., 1990, The Relationship Between Charge Movements Associated with Ica and INa-Ca. in Cardiac Myocytes, Science, 148: 376.CrossRefGoogle Scholar
  4. Caillé, J., Ildefonse, M., and Rougier, O., 1978, Existence of a sodium current in the tubular membrane of frog twitch muscle fibre; its possible role in the activation of contraction, Pflügers Arch., 374: 167.PubMedCrossRefGoogle Scholar
  5. Caillé, J., Ildefonse, M., and Rougier, O., 1979, Evidence for an action of sodium ions in the activation of sodium ions in the activation of contraction of twitch muscle fibre, Pflügers Arch., 379: 117.PubMedCrossRefGoogle Scholar
  6. Caswell, A.H., and Bzandt, N.R., 1981. Ion induced release of calcium from isolated sarco-plasmic reticulum, J. Membrane Biol., 58: 21.CrossRefGoogle Scholar
  7. Curtis, B.A., 1988, Na/Ca exchange and excitation-contraction coupling in frog fast fibres, J. Muscle Res. and Cell Motil., 9: 415.CrossRefGoogle Scholar
  8. Donoso, P., and Hidalgo, C., 1989, Sodium-calcium exchange in transverse tubules isolated from frog skeletal muscle, Biochem. Biophys. Acta, 978: 8.PubMedCrossRefGoogle Scholar
  9. Endo, M., 1977, Calcium release from the sarcoplasmic reticulum, Physiol. Rev., 57: 71.PubMedGoogle Scholar
  10. Fabiato, A., 1985, Time and calcium dependence of activation and inactivation of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Puzkinje cell, J. Gen. Physiol., 85: 247.PubMedCrossRefGoogle Scholar
  11. Frank, G.B., 1980, The current view of the source of trigger calcium in excitation-contraction coupling in vertebrate skeletal muscle, Biochem. Pharmacol., 29: 2399.PubMedCrossRefGoogle Scholar
  12. Frank, G.B., 1982, Roles of extracellular and “trigger” calcium ions in excitation-contraction coupling in skeletal muscle, Can. J. Physiol. Pharmacol., 60: 427.PubMedCrossRefGoogle Scholar
  13. Frank, G.B., 1984, Blockade of Ca2+ channels inhibits K+ contracture but not twitches in skeletal muscle, Can. J. Physiol. Pharmacol., 62: 374.PubMedCrossRefGoogle Scholar
  14. Frank, G.B., 1990, Dihydropyridine calcium channel antagonists block and agonists potentiate high potassium contracture but not twitches in frog skeletal muscle, J.J. Physiol., 40: 205.Google Scholar
  15. Franzini-Armstrong, C., and Nunzi, G. 1983, Functional feet and particles in the triads of a fast twitch muscle fiber, J. Muscle Res. Cell Motil, 4:233.PubMedCrossRefGoogle Scholar
  16. Gonzales-Serratos, M., Valle-Aguilera, R., Lathrop, R., del Carmen Garcia, M., 1982, Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling, Nature, 298: 292.CrossRefGoogle Scholar
  17. Hui, C.S., Milton, R.L., and Eisenberg, R.S., 1984, Charge movement in skeletal muscle fibres paralysed by the calcium-entry blocker to 600, Proc. Natl. Acad. Sci. USA, 81: 2582.PubMedCrossRefGoogle Scholar
  18. Jaimovich, E., Venosa, R.A., Shrarger, P., Horowicz, P., 1976, Density and distribution of tetrodotoxin receptors in normal and detubulated frog sartorius muscle, J. Gen. Physiol., 67: 399.PubMedCrossRefGoogle Scholar
  19. Kim, D.H., Ohnishi, S.T., Ikemoto, N., 1983, Kinetic studies of calcium release from sarcoplasmic reticulum in vitro, J. Biol. Chem., 258: 9662.PubMedGoogle Scholar
  20. Kirsch, G.E., Nichols, R.A., and Nakajima, S., 1977, Delayed rectification in the transverse tubules, J.J. Gen. Physiol., 70: 1.CrossRefGoogle Scholar
  21. Kovács, L., Rîos, E., and Schneider, M.R., 1979, Calcium transients and intramembrane charge movement in skeletal muscle, Nature (L.), 179: 391.CrossRefGoogle Scholar
  22. Lea, T.J., Griffiths, P.J., Tregear, R.T., and Ashley, C.C., 1986, An examination of the ability of inositol, 1,4,5-trisphosphate to induce calcium release and tension development in skinned skeletal muscle fibres of frog and crustacea, FEBS Lett., 207: 153.PubMedCrossRefGoogle Scholar
  23. Leblanc, N., and Hume, R., 1990, Sodium Current-Induced Release of Calcium from Cardiac Sarcoplasmic Reticulum, Science, 248: 372.PubMedCrossRefGoogle Scholar
  24. Lüttgau, H.C., Gottschalk, G., and Berwe, D., 1986, The role of Ca2+ in inactivation and paralysis of excitation-contraction coupling in skeletal muscle, Fortschr. Zoologie, 33: 195.Google Scholar
  25. Lüttgau, H.C., and Spiecker, W., 1979, The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog, J. Physiol. (L.), 296:411.PubMedGoogle Scholar
  26. Lüttgau, H.C., and Stephenson, G.D., 1986. Ion movements in skeletal muscle in relation to the Activation of Contraction, in: “Physiology of Membrane Disorders”, II ed., T. Andreoli et al, eds, Plenum Med. Book Company, N.Y and L.Google Scholar
  27. Mikos, G.L., and Snow, T.R., 1987, Failure of inositol 1,4,5-trisphosphate to elicit or potentiate Ca2+ release from isolated skeletal muscle sarcoplasmic reticulum, Biochem. Biophvs. Acta, 927: 256.CrossRefGoogle Scholar
  28. Nesterov, V.P., 1975, Membrane translocations of Na+ in skeletal muscles function, in: “Structure and Functions of Biological Membranes”, Nauka, Moscow.Google Scholar
  29. Nesterov, V.P., 1985, On the mechanisms of Na+ (Li+) involvement in the skeletal muscle intracellular signal transmission, Sechenov Physiol. J. of USSR, 71: 985.Google Scholar
  30. Nesterov, V.P., 1988, Possible mechanisms of Na+-induced release of calcium ions from the sarcoplasmic reticulum of skeletal muscle fibres of vertebrates, Physiol. J. (Rus.) 34: 60.Google Scholar
  31. Nesterov, V.P., and Fedorov, V.V., 1971, On the possible role of Na and K ions in electro-mechanical coupling, J. Evol. Boich. Physiol. (Rus.), 7: 303.Google Scholar
  32. Nesterov, V.P., and Senchenkova, A.A., 1975, On the mechanisms of the excitation-contraction coupling in the frog phasic muscle fibres, Cytology, (Rus.), 17: 167.Google Scholar
  33. Potreau, D., and Raymond, G., 1982, Existence of a sodium-induced calcium release mechanisms on frog skeletal muscle fibres, J. Physiol., 333: 463.PubMedGoogle Scholar
  34. Schneider, M.F. and Chandler, W.K., 1973, Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction-coupling, Nature (L.). 242: 244.CrossRefGoogle Scholar
  35. Stanfield, P.R., and Ashcroft, F.M., 1982, Calcium currents of frog and insect skeletal muscle fibres measured during voltage clamp, Can. J. Physiol, and Pharmacol., 60: 508.CrossRefGoogle Scholar
  36. Varsanyi, M., Messer, M., and Brandt, N.R., 1989, Intracellular localization of inositol-phospholipid-metabolizing enzymes in rabbit fast-twitch skeletal muscle, Eur. J. Biochem., 179: 473.PubMedCrossRefGoogle Scholar
  37. Venosa, R.A., 1974, Inward movement of sodium ions in resting and stimulated frog’s sartorius muscle, J. Physiol., 241: 155.PubMedGoogle Scholar
  38. Vergara, J., Tsien, R.Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle, Proc. Natl. Acad. Sci. USA, 82: 6352.PubMedCrossRefGoogle Scholar
  39. Volpe, P., Di Virgilio, F., Pozzan, T., and Salviati, G., 1986, Role of inositol 1,4,5-trisphosphate in excitation-contraction coupling in skeletal muscle, FEBS Lett., 197: 1.PubMedCrossRefGoogle Scholar
  40. Volpe, P., Salviati, G., Di Virgilio, F., and Pozzan, T., 1985, Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle, Nature, 316: 347.PubMedCrossRefGoogle Scholar
  41. Walker, J.W., Somlyo, A.V., Goldman, Y.E., Somlyo, A.P., and Trentham, D.R., 1987, Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate, Nature (L.) 327: 249.CrossRefGoogle Scholar
  42. Yonemura, K., and Sato, M., 1967, The testing membrane potential and cation movement in frog muscle fibers after exposure to lithium ions, J.J. Physiol., 17: 678.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Vladimir Nesterov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryLeningradUSSR

Personalised recommendations