Advertisement

Ca2+ Antagonists as Tools in the Analysis of Excitation-Contraction Coupling in Skeletal Muscle Fibres

  • H. Ch. Lüttgau
  • Th. Böhle
  • A. Schnier
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 311)

Abstract

Organic Ca2+ antagonists are specific substances which interfere with the gating of Ca2+ channels. They are of great interest as they are effective drugs in the therapy of different heart diseases. At present one distinguishes between three main classes of Ca2+ antagonists: dihydropyridines (DHPs), phenylalkylamines (PAAs) and benzothiazepines (BTZs). These classes appear to have different binding sites at the Ca2+ channel which show a reciprocal allosteric interaction among each other and with additional Ca2+ binding sites (Glossmann et al., 1985).

Keywords

Skeletal Muscle Fibre Voltage Sensor Charge Movement Single Muscle Fibre Conditioning Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bean, B. P., 1984, Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state, Proc. Natl. Acad. Sci. USA, 81:6388.PubMedCrossRefGoogle Scholar
  2. Berwe, D., Gottschalk, G., and Lüttgau, H. Ch., 1987, Effects of the calcium antagonist gallopamil (D600) upon excitation-contraction coupling in toe muscle fibres of the frog, J. Physiol., 385:693.PubMedGoogle Scholar
  3. Böhle, Th. 1990, Quantitative Untersuchungen zur Wirkung von Diltiazem auf die elektro-mechanische Kopplung in Skelettmuskelfasern, Dissertation, Fakultät für Biologie der Ruhr-Universität Bochum.Google Scholar
  4. Böhle, Th., 1991, The effect of the benzothiazepine diltiazem on force and Ca2+ current in isolated frog skeletal muscle fibres, J. Physiol., in press.Google Scholar
  5. Cognard, C., Romey, G., Galizzi, J.-P., Fosset, M. and Lazdunski, M., 1986, Dihydropyridine-sensitive Ca2+ channels in mammalian skeletal muscle cells in culture: electrophysiological properties and interactions with Ca2+ channel activator (BayK8644) and inhibitor (PN 200–110), Proc. Natl. Acad. Sci. USA, 83:1518.PubMedCrossRefGoogle Scholar
  6. Dulhunty, A. F., and Gage, P. W., 1988, Effects of extracellular calcium concentration and dihydropyridines on contraction in mammalian skeletal muscle, J. Physiol., 399:63.PubMedGoogle Scholar
  7. Eisenberg, R.S., McCarthy, R.T., and Milton, R.L., 1983, Paralysis of frog skeletal muscle fibres by the calcium antagonist D600, J. Physiol., 341:495.PubMedGoogle Scholar
  8. Erdmann, R., and Lüttgau, H. Ch., 1989, The effect of the phenylalkylamine D888 (Devapamil) on force and Ca2+ current in isolated frog skeletal muscle fibres. J. Physiol., 413: 521.PubMedGoogle Scholar
  9. Feldmeyer, D., Melzer, W., and Pohl, B., 1990, Effects of Gallopamil (D600) on calcium release and intramembrane charge movements in frog skeletal muscle fibres, J. Physiol., 421:343.PubMedGoogle Scholar
  10. Frank, G. B., 1990, Dihydropyridine calcium channel antagonists block and agonists potentiate high potassium contractures but not twitches in frog skeletal muscle, Jap. J. Physiol., 40:205.CrossRefGoogle Scholar
  11. Frank, G. B., Konya, L., and Subrahmanyam Sudha, T., 1988, Nitrendipine blocks high potassium contractures but not twitches in rat skeletal muscle. Can. J. Physiol. Pharmacol., 66:1210.PubMedCrossRefGoogle Scholar
  12. Glossmannf H., Ferry, D. R., Goll, A., Striessnig, J., and Zernig, G., 1985, Calcium channels and calcium channel drugs: Recent biochemical and biophysical findings, Arzneim.Forsch., 35(II), 12a.Google Scholar
  13. Glossmann, H., and Striessnig, J., 1988, Calcium Channels, Vitamines and Hormones, 44:155.CrossRefGoogle Scholar
  14. Gomolla, M., Gottschalk, G., and Lüttgau, H. Ch., 1983, Perchlorate-induced alterations in electrical and mechanical parameters of frog skeletal muscle fibres. J. Physiol., 343:197.PubMedGoogle Scholar
  15. Hille, B., 1977, Local anaesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J. Gen. Physiol., 69:497.PubMedCrossRefGoogle Scholar
  16. Kanaya, S., Arlock, P., Katzung, B. G., and Hondeghem, L. M., 1983, Diltiazem and verapamil preferentially block inactivated cardiac calcium channels, J. Molec. Cell. Cardiol., 15:145.CrossRefGoogle Scholar
  17. Kanngiesser, U., and Pongs, O., 1989, Binding Ca2+ to intracellular or to extracellular sites of dihydropyridine receptor of rabbit skeletal muscle discriminates between in vitro binding of Ca2+ -channel agonist and antagonist, Eur. J. Biochem., 181:467.PubMedCrossRefGoogle Scholar
  18. Kovacs, L., Rios, E., and Schneider, M.F., 1983, Measurements and modification of free calcium transients in frog skeletal muscle fibres by a metallochromic indicator dye, J. Physiol., 343:161.PubMedGoogle Scholar
  19. Lamb, G.D., and Stephenson, D.G., 1991, Effect of Mg2+ on the control of Ca2+ release in skeletal muscle fibres of the toad. J. Physiol., 434:507.PubMedGoogle Scholar
  20. Lamb, G. D., and Walsh, T., 1987, Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit. J. Physiol., 393:595.PubMedGoogle Scholar
  21. Lüttgau, H. Ch., Gottschalk, G., and Berwe, D., 1986, The role of Ca2+ in inactivation and paralysis of excitation-contraction coupling in skeletal muscle, in: “Fortschritte der Zoologie, vol. 33, Membrane Control of Cellular Activity”, H. Ch. Lüttgau ed., Gustav Fischer Verlag, Stuttgart.Google Scholar
  22. Lüttgau, H. Ch., and Spiecker, W., 1979, The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog, J. Physiol., 296:411.PubMedGoogle Scholar
  23. Neuhaus, R., Rosenthal, R., and Lüttgau, H.Ch., 1990, The effects of dihydropyridine derivatives on force and Ca2+ current in frog skeletal muscle fibres, J. Physiol., 427:187.PubMedGoogle Scholar
  24. Pizarro, G., Brum, G., Fill M. Fitts, R., Rodriguez, M., Uribe, I., and Rios, E., 1988, The voltage sensor of skeletal muscle excitation-contraction coupling: a. comparison with Ca2+ channels, in: “The Calcium Channel: Structure, Function and Implications”, M. Morad, W. Nayler, S. Kazda, and M. Schramm, ed., Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  25. Pizarro, G., Fitts, R., Uribe, I., and Rios, E., 1989, The voltage sensor of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity, J. Gen. Physiol., 94:405.PubMedCrossRefGoogle Scholar
  26. Rios, E. and Brum, G., 1987, Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle, Nature, 325:717.PubMedCrossRefGoogle Scholar
  27. Ruff, R. L., Simoncini, L., and Stühmer, W., 1988, Slow sodium channel inactivation in mammalian muscle: A possible role in regulating excitability, Muscle & Nerve, 11:502.CrossRefGoogle Scholar
  28. Schneider, M. F., and Chandler, W. K., 1973, Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. Nature, 242:244.PubMedCrossRefGoogle Scholar
  29. Schnier, A., and Lüttgau, H.Ch., 1991, The effect of extracellular metal cations on excitation-contraction coupling in frog skeletal muscle fibres, J. Physiol., in press.Google Scholar
  30. Tanabe, T., Takeshima, H., Mikami A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S., 1987, Primary structure of the receptor for calcium channel blockers from skeletal muscle, Nature, 328:313.PubMedCrossRefGoogle Scholar
  31. Tanabe, T., Beam, K.G., Povel, J.A., and Numa, S., 1988, Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA, Nature, 336:134.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • H. Ch. Lüttgau
    • 1
  • Th. Böhle
    • 1
  • A. Schnier
    • 1
  1. 1.Department of Cell PhysiologyRuhr-University of BochumBochumGermany

Personalised recommendations