Advertisement

Effects of Calcium Release from the Sarcoplasmic Reticulum on Intramembrane Charge Movement in Skeletal Muscle

  • László Csernoch
  • Gonzalo Pizarro
  • Jesús García
  • Géza Szücs
  • Enrico Stefani
  • Eduardo Ríos
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 311)

Abstract

Skeletal muscle contraction is initiated by the increase in the intracellular calcium concentration ([Ca2+]) following the depolarization of the surface- and transverse-(T-) tubular membranes (see the review by Ebashi, 1991). Calcium ions are released into the myoplasm from an intracellular store, the sarcoplasmic reticulum (SR), through the ryanodine receptor calcium release channel (Imagawa et al., 1987; Inui et al., 1987). The voltage sensitive step that links channel opening to depolarization is the displacement of permanent charges (charge movement, Schneider and Chandler, 1973) found in the T-tubular membrane and localized in the DHP receptor (Ríos and Pizarro, 1991).

Keywords

Sarcoplasmic Reticulum Calcium Release Voltage Sensor Charge Movement Difference Record 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R. H. and Peres, A., 1977, A ‘gating’ signal for the potassium channel? Nature (Lond.), 267:800.CrossRefGoogle Scholar
  2. Almers, W., Adrian, R. H. and Levinson, S. R., 1975, Some dielectric properties of muscle membrane and their possible importance for excitation-contraction coupling, Ann. NY Acad. Sci., 264:278.PubMedCrossRefGoogle Scholar
  3. Brum, G., and Ríos, E., 1987, Intramembrane charge movement in frog skeletal muscle fibres. Properties of charge-2, J. Physiol. (Lond.), 387:489.Google Scholar
  4. Brum, G., Ríos, E., and Schneider, M. F., 1988a, A quantitative model of calcium removal from the myoplasmic solution (Appendix to Brum, G., Ríos, E., and Stefani, E. (1988) Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibers), J. Physiol. (Lond.), 398:441.Google Scholar
  5. Brum, G., Ríos, E., and Stefani, E., 1988b, Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibers, J. Physiol. (Lond.), 398:441.Google Scholar
  6. Csernoch, L., Huang, C. L.-H., Szücs, G., and Kovács, L., 1988, Differential effects of tetracaine on charge movements and Ca2+ signals in frog skeletal muscle, J. Gen. Physiol., 92:601.PubMedCrossRefGoogle Scholar
  7. Csernoch, L., Pizarro, G., Uribe, I., Rodríguez, M., and Ríos, E., 1991, Interfering with calcium release suppresses Iγ, the “hump” component of intramembranous charge movement in skeletal muscle, J. Gen. Physiol., 97:845.PubMedCrossRefGoogle Scholar
  8. Duane, S. and Huang, C. L.-H., 1982, A quantitative description of the voltage dependent capacitance in frog skeletal muscle in terms of equilibrium statistical mechanics. Proc. R. Soc. Lond. B Biol., 215:75.CrossRefGoogle Scholar
  9. Ebashi, S., 1991, Excitation-contraction coupling and the mechanism of muscle contraction, Ann. Rev. Physiol., 53:1.CrossRefGoogle Scholar
  10. García, J., Amador, E., and Stefani, E., 1989, Relationship between myoplasmic Ca transients and Ca current in frog skeletal muscle, J. Gen. Physiol., 94:973.PubMedCrossRefGoogle Scholar
  11. Horowicz, P., and Schneider, M. F., 1981, Membrane charge moved at contraction thresholds in skeletal muscle fibres, J. Physiol. (Lond.), 314:595.Google Scholar
  12. Huang, C. L.-H., 1981, Effects of local anaesthetics on the relationship between charge movements and contractile thresholds in frog skeletal muscle, J. Physiol. (Lond.), 320:381.Google Scholar
  13. Huang, C. L.-H., 1983, Time domain spectroscopy of the membrane capacitance in frog skeletal muscle, J. Physiol. (Lond.), 341:1.Google Scholar
  14. Huang, C. L.-H., 1989, Intramembrane charge movements in skeletal muscle, Physiol. Rev., 68:1197.Google Scholar
  15. Hui, C. S., 1983a, Pharmacological studies of charge movement in frog skeletal muscle, J. Physiol. (Lond.), 337:509.Google Scholar
  16. Hui, C. S., 1983b, Differential properties of two charge components in frog skeletal muscle, J. Physiol. (Lond.), 337:531.Google Scholar
  17. Imagawa, T., Smith, J. S., Coronado, R., and Campbell, K. P., 1987, Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+ permeable pore of the calcium release channel, J. Biol., Chem., 262:16636.Google Scholar
  18. Inui, M., Saito, A., and Fleischer, S., 1987, Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle, J. Biol. Chem., 262:1740.PubMedGoogle Scholar
  19. Jacquemond, V., Csernoch, L., Klein, M. G., and Schneider, M. F., 1991, Voltage-gated and calcium-gated calcium release during depolarization of skeletal muscle fibers, Biophys. J., 60:in press.Google Scholar
  20. Kovács, L., Ríos, E., and Schneider, M. F., 1983, Measurement and modification of free calcium transients in frog skeletal muscle fibres by a metallochromic indicator dye, J. Physiol. (Lond.), 343:161.Google Scholar
  21. Kovács, L., and Schneider, M. F., 1978, Contractile activation by voltage clamp depolarization of cut skeletal muscle fibres, J. Physiol. (Lond.), 277:483.Google Scholar
  22. Kovács, L., and Szücs, G., 1983, Effect of caffeine on intramembrane charge movement and calcium transients in cut skeletal muscle fibres of the frog, J. Physiol. (Lond.), 341:559.Google Scholar
  23. Meissner, G., 1986, Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum, J. Biol. Chem., 261:6300.PubMedGoogle Scholar
  24. Melzer, W., Ríos, E., and Schneider, M. F., 1987, A general procedure for determining calcium release from the sarcoplasmic reticulum in skeletal muscle fibers, Biophys. J., 51:849.PubMedCrossRefGoogle Scholar
  25. Pizarro, G., Csernoch, L., Uribe, I., Rodríguez, M., and Ríos, E., 1991, The relationship between Qγ and Ca release from the sarcoplasmic reticulum in skeletal muscle, J. Gen. Physiol., 97:913.PubMedCrossRefGoogle Scholar
  26. Pizarro, G., Rodriguez, M., Csernoch, L., and Ríos, E., 1990, Positive feedback in skeletal muscle E-C coupling, Biophys. J., 57:401a.Google Scholar
  27. Ríos, E., and Pizarro, G., 1988, Voltage sensors and calcium channels of excitation-contraction coupling. NIPS, 3:223.Google Scholar
  28. Ríos, E., and Pizarro, G., 1991, The voltage sensor of excitation-contraction coupling in skeletal muscle, Physiol. Rev., 71:849.PubMedGoogle Scholar
  29. Schneider, M. F., and Chandler, W. K., 1973, Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling, Nature, 242:244.PubMedCrossRefGoogle Scholar
  30. Schneider, M. F., and Simon, B. J., 1988, Inactivation of calcium release from the sarcoplasmic reticulum in frog skeletal muscle, J. Physiol. (Lond.), 405:727.Google Scholar
  31. Simon, B. J., Klein, M. G., and Schneider, M. F., 1991, Calcium dependence of inactivation of calcium release in frog skeletal muscle, J. Gen. Physiol., 97:437.PubMedCrossRefGoogle Scholar
  32. Szücs, G., Csernoch, L., Magyar, J., and Kovács, L., 1991, Contraction threshold and the “hump” component of charge movement in frog skeletal muscle, J. Gen. Physiol., 97:897.PubMedCrossRefGoogle Scholar
  33. Vergara, J., and Caputo, C., 1983, Effects of tetracaine on charge movements and calcium signals in frog skeletal muscle fibers, Proc. Natl. Acad. Sci. (USA), 80:1477.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • László Csernoch
    • 1
  • Gonzalo Pizarro
    • 2
  • Jesús García
    • 3
  • Géza Szücs
    • 1
  • Enrico Stefani
    • 3
  • Eduardo Ríos
    • 2
  1. 1.Dept. of Physiol.Univ. Med. Sch.DebrecenHungary
  2. 2.Dept. of Physiol.Rush Univ.ChicagoUSA
  3. 3.Dept. of Physiol.Baylor Col. of MedicineHoustonUSA

Personalised recommendations