Advertisement

Na/Ca Exchange and First Messenger Ca in Skeletal Muscle Excitation - Contraction Coupling

  • Brian A. Curtis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 311)

Abstract

Depolarization initiates a process in the wall of the transverse tubular system (t system). This process gives rise to a transient electrical signal - charge movement - which is closely linked to the release of Ca from the sarcoplasmic reticulum (SR) via the foot process. Two types of linkage have been discussed at this Conference: 1) structural links spanning the t-SR gap, such as the rigid rod model (Schneider and Chandler, 1973), and 2) chemical links including trigger Ca (Bianchi, 1969 and Frank, 1980).

Keywords

Sarcoplasmic Reticulum Charge Movement Frog Skeletal Muscle Sarcolemmal Vesicle Influx Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almers, W., and Best, P. M., 1976, Effects of tetracaine on displacement currents and contraction of frog skeletal muscle, J. Physiol., 262:583–611.PubMedGoogle Scholar
  2. Almers, W., Fink, R., and Palade, P. T., 1981, Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization, J. Physiol., 312:177–207.PubMedGoogle Scholar
  3. Armstrong, C. M., Bezanilla, F. M., and Horowicz, P., 1972, Twitches in the presence of ethylene glycol bis (B-aminoethyl ether), N, N-tetraacetic acid, Biochim. Biophys. Acta, 267:605–608.PubMedCrossRefGoogle Scholar
  4. Baylor, S. M., Hollingworth, S., and Marshall, M. W., 1989, Effects of intracellular ruthenium red on excitation-contraction coupling in intact frog skeletal muscle fibres, J. Physiol., 408:617–635.PubMedGoogle Scholar
  5. Bianchi, C. P., 1969, Pharmacology of excitation-contraction coupling in muscle, Fed. Proc., 28(5):1624–1628.PubMedGoogle Scholar
  6. Bianchi, C. P., and Shanes, A. M., 1959, Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture, J. of Gen. Physiol., 42(4):803–815.CrossRefGoogle Scholar
  7. Block, B. H., Imagawa, T., Campbell, K. P., and Franzini-Armstrong, C., 1988, Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic junction in skeletal muscle, J. Cell Biol., 107:2587–600.PubMedCrossRefGoogle Scholar
  8. Brum, G., and Rios, E., 1987, Intramembrane charge movement in frog skeletal muscle fibres: properties of charge2, J. Physiol., 387:489–517.PubMedGoogle Scholar
  9. Brum, G., Fitts, R., Pizarro, G., and Rios, E., 1988, Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling, J. Physiol., 398:475–505.PubMedGoogle Scholar
  10. Cosmos, E., and Harris, E. J., 1961, In vitro studies of the gain and exchange of calcium in frog skeletal muscle, J. Gen. Physiol., 44:1121–30.PubMedCrossRefGoogle Scholar
  11. Curtis, B. A., 1963, Some effects of Ca-free choline-Ringer solution on frog skeletal muscle, J. Physiol., 166:75–86.PubMedGoogle Scholar
  12. Curtis, B. A., 1964, The recovery of contractile ability following a contracture in skeletal muscle, J. Gen. Physiol., 47(5): 953–964.PubMedCrossRefGoogle Scholar
  13. Curtis, B. A., 1966, Ca fluxes in single twitch muscle fibers, J. Gen. Physiol., 50(2):255–267.PubMedCrossRefGoogle Scholar
  14. Curtis, B. A., 1970, Calcium efflux from frog twitch muscle fibers, J. Gen. Physiol., 55:243–53.CrossRefGoogle Scholar
  15. Curtis, B. A., 1988, Na/Ca exchange and excitation-contraction coupling in frog fast fibres, J. Mus. Res. and Cell Motil., 9: 415–427.CrossRefGoogle Scholar
  16. Curtis, B. A., and Eisenberg, R. S., 1985, Calcium influx in contracting and paralyzed frog twitch muscle fibers, J. Gen. Physiol., 85:383–408.PubMedCrossRefGoogle Scholar
  17. Donoso, P., and Hidalgo, C., 1989, Sodium-calcium exchange in transverse tubules isolated from frog skeletal muscle, Biochim. Biophys. Acta, 978:8–16.PubMedCrossRefGoogle Scholar
  18. Fabiato, A., 1984, Dependence of the Ca2+-induced release from the sarcoplasmic reticulum of skinned skeletal muscle fibres from the frog semitendinosus on the rate of change of free Ca2+ concentration at the outer surface of the sarcoplasmic reticulum, J. Physiol., 353:56P.Google Scholar
  19. Frank, G. B., 1980, The current view of the source of trigger calcium in excitation-contraction coupling in vertebrate skeletal muscle, Biochem. Pharmacol., 29:2399–406.PubMedCrossRefGoogle Scholar
  20. Gilbert, J. R., and Meissner, G., 1982, Sodium-calcium ion exchange in skeletal muscle sarcolemmal vesicles, J. Mem. Biol., 69:77–84.CrossRefGoogle Scholar
  21. González, S., Brum, G., and Pizarro, G., 1991, Effects of procaine on calcium release in skeletal muscle fibers, Biophys. J. 59:62a.Google Scholar
  22. González-Serratos, H., Valle-Aquilera, R., Lathrop, D. A., and Del Carmen Garcia, M., 1982, Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling, Nature, 298:292–4.PubMedCrossRefGoogle Scholar
  23. Hymel, L., Inui, M., Fleischer, S., and Schindler, H., 1988, Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+-activated oligomeric Ca2+ channels in planar bilayers, Proc. Nat. Acad. Sci., 85:441–445.PubMedCrossRefGoogle Scholar
  24. Keynes, R. D., 1951, The ionic movements during nervous activity, J. Physiol., 114:119–150.PubMedGoogle Scholar
  25. Li, Z., Nicoll, D. A., Collins, A., Hilgemann, D. W., Filoteo, A. G., Penniston, J. T., Tomich, J. M., and Philipson, K. D., 1991, Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger, Biophys. J., 59:138a.Google Scholar
  26. Luttgau, H. C., 1963, The action of calcium ions on potassium contractures of single muscle fibres, J. Physiol., 168:679–697.Google Scholar
  27. Luttgau, H. C., and Spiecker, W., 1979, The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog, J. Physiol., 296: 411–429.PubMedGoogle Scholar
  28. Meissner, G., 1984, Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum, J. Biol. Chem., 259:2365–2374.PubMedGoogle Scholar
  29. Mobley, B. A., and Eisenberg, B. R., 1975, Sizes of components in frog skeletal muscle measured by methods of stereology, J. Gen. Physiol., 66:31–45.PubMedCrossRefGoogle Scholar
  30. Philipson, K. D., 1985, Sodium-calcium exchange in plasma membrane vesicles, Ann. Rev. Physiol., 47:561–71.CrossRefGoogle Scholar
  31. Podolsky, R. J., 1964, The maximum sarcomere length for contraction of isolated myofibrils, J. Physiol., 170:110–123.PubMedGoogle Scholar
  32. Reuter, H., 1991, Ins and outs of Ca2+ transport, Nature, 349: 567–568.PubMedCrossRefGoogle Scholar
  33. Schneider, M. F., and Chandler, W. K., 1973, Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling, Nature, 242:244–6.PubMedCrossRefGoogle Scholar
  34. Schwartz, L. M., McCleskey, E. W., and Almers, W., Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels, Nature, 314:747–750.Google Scholar
  35. Sheu, S-S., and Blaustein, M. P., 1986, Sodium/calcium exchange and regulation of cell calcium and contractility in cardiac muscle, with a note about vascular smooth muscle, in: H. A. Fozzard et al., eds., The Heart and Cardiovascular System, New York: Raven Press, Ch. 26.Google Scholar
  36. Siegl, P. K. S., Cragoe, E. J., Trumble, M. J., and Kaczorowski, G. J., 1984, Inhibition of Na+/Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogues of amiloride, Proc. Nat. Acad. Sci., 81:3238–42.PubMedCrossRefGoogle Scholar
  37. Smith, J., Coronado, R., and Meissner, G., 1986, Single channel measurement of the calcium release channel from skeletal muscle sarcoplasmic reticulum, J. Gen. Physiol., 8:573–88.CrossRefGoogle Scholar
  38. Somlyo, A. V., Gonzalez-Serrato, H., Shuman, H., McClellan, G., and Somlyo, A. P., 1981, Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron probe study, J. Cell. Biol., 90:577–94.PubMedCrossRefGoogle Scholar
  39. Stefani, E., and Chiarandini, D., 1982, Ionic channels in skeletal muscle, Ann. Rev. Physiol., 44:357–372.CrossRefGoogle Scholar
  40. Watson, P. T., and Winegrad, S., 1973, A possible sodium-calcium exchange in skeletal muscle, Fed. Proc., 32:374, Abst.Google Scholar
  41. Winegrad, S., 1965, The location of muscle calcium with respect to the myofibrils, J. Gen. Physiol., 48:997–1002.PubMedCrossRefGoogle Scholar
  42. Winegrad, S., 1970, The intracellular site of calcium activation of contraction in frog skeletal muscle, J. Gen. Physiol., 55:77–88.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Brian A. Curtis
    • 1
  1. 1.University of Illinois College of Medicine at PeoriaPeoriaUSA

Personalised recommendations