Skip to main content

Na/Ca Exchange and First Messenger Ca in Skeletal Muscle Excitation - Contraction Coupling

  • Chapter
Excitation-Contraction Coupling in Skeletal, Cardiac, and Smooth Muscle

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 311))

Abstract

Depolarization initiates a process in the wall of the transverse tubular system (t system). This process gives rise to a transient electrical signal - charge movement - which is closely linked to the release of Ca from the sarcoplasmic reticulum (SR) via the foot process. Two types of linkage have been discussed at this Conference: 1) structural links spanning the t-SR gap, such as the rigid rod model (Schneider and Chandler, 1973), and 2) chemical links including trigger Ca (Bianchi, 1969 and Frank, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almers, W., and Best, P. M., 1976, Effects of tetracaine on displacement currents and contraction of frog skeletal muscle, J. Physiol., 262:583–611.

    PubMed  CAS  Google Scholar 

  • Almers, W., Fink, R., and Palade, P. T., 1981, Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization, J. Physiol., 312:177–207.

    PubMed  CAS  Google Scholar 

  • Armstrong, C. M., Bezanilla, F. M., and Horowicz, P., 1972, Twitches in the presence of ethylene glycol bis (B-aminoethyl ether), N, N-tetraacetic acid, Biochim. Biophys. Acta, 267:605–608.

    Article  PubMed  CAS  Google Scholar 

  • Baylor, S. M., Hollingworth, S., and Marshall, M. W., 1989, Effects of intracellular ruthenium red on excitation-contraction coupling in intact frog skeletal muscle fibres, J. Physiol., 408:617–635.

    PubMed  CAS  Google Scholar 

  • Bianchi, C. P., 1969, Pharmacology of excitation-contraction coupling in muscle, Fed. Proc., 28(5):1624–1628.

    PubMed  CAS  Google Scholar 

  • Bianchi, C. P., and Shanes, A. M., 1959, Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture, J. of Gen. Physiol., 42(4):803–815.

    Article  CAS  Google Scholar 

  • Block, B. H., Imagawa, T., Campbell, K. P., and Franzini-Armstrong, C., 1988, Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic junction in skeletal muscle, J. Cell Biol., 107:2587–600.

    Article  PubMed  CAS  Google Scholar 

  • Brum, G., and Rios, E., 1987, Intramembrane charge movement in frog skeletal muscle fibres: properties of charge2, J. Physiol., 387:489–517.

    PubMed  CAS  Google Scholar 

  • Brum, G., Fitts, R., Pizarro, G., and Rios, E., 1988, Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling, J. Physiol., 398:475–505.

    PubMed  CAS  Google Scholar 

  • Cosmos, E., and Harris, E. J., 1961, In vitro studies of the gain and exchange of calcium in frog skeletal muscle, J. Gen. Physiol., 44:1121–30.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, B. A., 1963, Some effects of Ca-free choline-Ringer solution on frog skeletal muscle, J. Physiol., 166:75–86.

    PubMed  CAS  Google Scholar 

  • Curtis, B. A., 1964, The recovery of contractile ability following a contracture in skeletal muscle, J. Gen. Physiol., 47(5): 953–964.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, B. A., 1966, Ca fluxes in single twitch muscle fibers, J. Gen. Physiol., 50(2):255–267.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, B. A., 1970, Calcium efflux from frog twitch muscle fibers, J. Gen. Physiol., 55:243–53.

    Article  CAS  Google Scholar 

  • Curtis, B. A., 1988, Na/Ca exchange and excitation-contraction coupling in frog fast fibres, J. Mus. Res. and Cell Motil., 9: 415–427.

    Article  CAS  Google Scholar 

  • Curtis, B. A., and Eisenberg, R. S., 1985, Calcium influx in contracting and paralyzed frog twitch muscle fibers, J. Gen. Physiol., 85:383–408.

    Article  PubMed  CAS  Google Scholar 

  • Donoso, P., and Hidalgo, C., 1989, Sodium-calcium exchange in transverse tubules isolated from frog skeletal muscle, Biochim. Biophys. Acta, 978:8–16.

    Article  PubMed  CAS  Google Scholar 

  • Fabiato, A., 1984, Dependence of the Ca2+-induced release from the sarcoplasmic reticulum of skinned skeletal muscle fibres from the frog semitendinosus on the rate of change of free Ca2+ concentration at the outer surface of the sarcoplasmic reticulum, J. Physiol., 353:56P.

    Google Scholar 

  • Frank, G. B., 1980, The current view of the source of trigger calcium in excitation-contraction coupling in vertebrate skeletal muscle, Biochem. Pharmacol., 29:2399–406.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, J. R., and Meissner, G., 1982, Sodium-calcium ion exchange in skeletal muscle sarcolemmal vesicles, J. Mem. Biol., 69:77–84.

    Article  CAS  Google Scholar 

  • González, S., Brum, G., and Pizarro, G., 1991, Effects of procaine on calcium release in skeletal muscle fibers, Biophys. J. 59:62a.

    Google Scholar 

  • González-Serratos, H., Valle-Aquilera, R., Lathrop, D. A., and Del Carmen Garcia, M., 1982, Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling, Nature, 298:292–4.

    Article  PubMed  Google Scholar 

  • Hymel, L., Inui, M., Fleischer, S., and Schindler, H., 1988, Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+-activated oligomeric Ca2+ channels in planar bilayers, Proc. Nat. Acad. Sci., 85:441–445.

    Article  PubMed  CAS  Google Scholar 

  • Keynes, R. D., 1951, The ionic movements during nervous activity, J. Physiol., 114:119–150.

    PubMed  CAS  Google Scholar 

  • Li, Z., Nicoll, D. A., Collins, A., Hilgemann, D. W., Filoteo, A. G., Penniston, J. T., Tomich, J. M., and Philipson, K. D., 1991, Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger, Biophys. J., 59:138a.

    Google Scholar 

  • Luttgau, H. C., 1963, The action of calcium ions on potassium contractures of single muscle fibres, J. Physiol., 168:679–697.

    Google Scholar 

  • Luttgau, H. C., and Spiecker, W., 1979, The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog, J. Physiol., 296: 411–429.

    PubMed  CAS  Google Scholar 

  • Meissner, G., 1984, Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum, J. Biol. Chem., 259:2365–2374.

    PubMed  CAS  Google Scholar 

  • Mobley, B. A., and Eisenberg, B. R., 1975, Sizes of components in frog skeletal muscle measured by methods of stereology, J. Gen. Physiol., 66:31–45.

    Article  PubMed  CAS  Google Scholar 

  • Philipson, K. D., 1985, Sodium-calcium exchange in plasma membrane vesicles, Ann. Rev. Physiol., 47:561–71.

    Article  CAS  Google Scholar 

  • Podolsky, R. J., 1964, The maximum sarcomere length for contraction of isolated myofibrils, J. Physiol., 170:110–123.

    PubMed  CAS  Google Scholar 

  • Reuter, H., 1991, Ins and outs of Ca2+ transport, Nature, 349: 567–568.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, M. F., and Chandler, W. K., 1973, Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling, Nature, 242:244–6.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, L. M., McCleskey, E. W., and Almers, W., Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels, Nature, 314:747–750.

    Google Scholar 

  • Sheu, S-S., and Blaustein, M. P., 1986, Sodium/calcium exchange and regulation of cell calcium and contractility in cardiac muscle, with a note about vascular smooth muscle, in: H. A. Fozzard et al., eds., The Heart and Cardiovascular System, New York: Raven Press, Ch. 26.

    Google Scholar 

  • Siegl, P. K. S., Cragoe, E. J., Trumble, M. J., and Kaczorowski, G. J., 1984, Inhibition of Na+/Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogues of amiloride, Proc. Nat. Acad. Sci., 81:3238–42.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J., Coronado, R., and Meissner, G., 1986, Single channel measurement of the calcium release channel from skeletal muscle sarcoplasmic reticulum, J. Gen. Physiol., 8:573–88.

    Article  Google Scholar 

  • Somlyo, A. V., Gonzalez-Serrato, H., Shuman, H., McClellan, G., and Somlyo, A. P., 1981, Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron probe study, J. Cell. Biol., 90:577–94.

    Article  PubMed  CAS  Google Scholar 

  • Stefani, E., and Chiarandini, D., 1982, Ionic channels in skeletal muscle, Ann. Rev. Physiol., 44:357–372.

    Article  CAS  Google Scholar 

  • Watson, P. T., and Winegrad, S., 1973, A possible sodium-calcium exchange in skeletal muscle, Fed. Proc., 32:374, Abst.

    Google Scholar 

  • Winegrad, S., 1965, The location of muscle calcium with respect to the myofibrils, J. Gen. Physiol., 48:997–1002.

    Article  PubMed  CAS  Google Scholar 

  • Winegrad, S., 1970, The intracellular site of calcium activation of contraction in frog skeletal muscle, J. Gen. Physiol., 55:77–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Curtis, B.A. (1992). Na/Ca Exchange and First Messenger Ca in Skeletal Muscle Excitation - Contraction Coupling. In: Frank, G.B., Bianchi, C.P., ter Keurs, H.E.D.J. (eds) Excitation-Contraction Coupling in Skeletal, Cardiac, and Smooth Muscle. Advances in Experimental Medicine and Biology, vol 311. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3362-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3362-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6483-2

  • Online ISBN: 978-1-4615-3362-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics