Skip to main content

Role of the Macrophage in the Regulation of Physiological and Pathological Angiogenesis

  • Chapter
Angiogenesis in Health and Disease

Part of the book series: NATO ASI Series ((NSSA,volume 227))

Abstract

Angiogenesis, the growth of new capillary blood vessels, is one of the most pervasive and essential biological processes encountered in the mammalian organism (Auerbach, 1981; Folkman and Cotran, 1978; Folkman, 1985; Folkman and Klagsbrun, 1987). A wide array of physiological and pathological conditions such as embryonic development, the formation of inflammatory granulation tissue during wound repair, and the growth of malignant solid tumors are strictly dependent upon the recruitment of new capillaries. In the adult organism, angiogenesis occurs infrequently yet can be rapidly induced by a number of physiologic stimuli. In recent years the macrophage (Mø) has been shown to be one of the key players in the regulation of physiologic and pathologic angiogenesis (Polverini et al., 1977b; Polverini, 1989). These cells perform multiple diverse functions within the immune system and influence the course of certain primitive yet fundamentally important processes such as nonspecific inflammation and wound healing (Leibovich and Ross, 1975). This functional versatility is due in large part to their ability to respond rapidly to environmental signals that induce them to acquire new or enhanced properties (Nathan, 1987). One of these functions is the capacity to induce and subsequently down-regulate the formation of new capillary blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auerbach, R., Angiogenesis-inducing factors: in: “Lymphokines,” E. Pick. ed., Academic Press, New York (1981).

    Google Scholar 

  • Bouck, N.P., Stoler, A., and Polverini, P.J., 1986, Coordinate control of anchorage independence, actin cytoskeleton, and angiogenesis by human chromosome 1 in hamster-human hybrids, Cancer Res. 46:5101.

    PubMed  CAS  Google Scholar 

  • Bouck, N., 1990, Tumor angiogenesis: the role of oncogenes and tumor suppressor genes, Cancer Cells 2.179.

    PubMed  CAS  Google Scholar 

  • Deiss, L.P., and Kimchi, A., 1991, A genetic tool used to identify thioredoxin as a mediator of a growth inhibitory signal, Science, 252:117.

    Article  PubMed  CAS  Google Scholar 

  • Evans, R., Tumor macrophages in host immunity to malignancy: in “The Macrophage in Neoplasia,” M.A. Fink ed., Academic Press, New York (1976).

    Google Scholar 

  • Evans, R., 1979, Host cells in transplanted murine tumors and their possible relevance to tumor growth, J. Reticuloenclothelial. Soc. 26:427

    CAS  Google Scholar 

  • Evans, R., 1977a, The effect of azothioprine on host-cell infiltration and growth of a murine fibrosarcoma, Int. J. Cancer 20:120.

    Article  CAS  Google Scholar 

  • Evans, R., 1977b, Effects of x-irradiation on host-cell infiltration and growth of a murine fibrosarcoma, Br. J. Cancer 35:557.

    Article  CAS  Google Scholar 

  • Folkman, J., and Cotran, R., 1976, Relation of vascular proliferation to tumor growth, Int. Rev. Exp. Pathol. 16:207.

    PubMed  CAS  Google Scholar 

  • Folkman, J., 1985, Tumor angiogenesis, Adv. in Cancer RE’S. 43:175.

    Article  CAS  Google Scholar 

  • Folkman, J, and Klagsbrun M., 1987, Angiogenic factors, Science 235:442.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., 1990, What is the evidence that tumors are angiogenesis dependent, J. Natl Cancer Inst. 82:4.

    Article  PubMed  CAS  Google Scholar 

  • Gimbrone, M.A.Jr., Leapman, S.B., Cotran, R.S., and Folkman, J., 1972, Tumor dormancy in vivo by prevention of neovascularization, J. Exp. Med. 136:261.

    Article  PubMed  Google Scholar 

  • Gimbrone, M.A.Jr., Cotran, R.S., Leapman, S.B., and Folkman, J., 1974, Tumor growth and neovascularization: an experimental model using the rabbit cornea, J. Natl. Cancer Inst. 52:413.

    PubMed  Google Scholar 

  • Good, D.J., Polverini, P.J., Rastinejad, F., LeBeau, M.M., Lemons, R.S., Frazier, W.A., and Bouck, N.P., 1990. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin, Proc. Natl. Acad. Sci. U.S.A. 87:6624.

    Article  PubMed  CAS  Google Scholar 

  • Harris, E.D.Jr., 1976, Recent insights into the pathogenesis of the proliferative lesion in rheumatoid arthritis, Arthritis Rheum. 19:68

    Article  PubMed  Google Scholar 

  • Hunt, T.K., Knighton, D.R., Thakral, K.K., Goodson, W.H., and Andrews, W.S., 1984, Studies on inflammation and wound healing; angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound macrophages, Surgery 96:48.

    PubMed  CAS  Google Scholar 

  • Jaffe, E.A., Ruggiero, J.T., and Falcone, D.J., 1985, Monocytes and macrophages synthesize and secrete thrombospondin, Blood 65:79.

    PubMed  CAS  Google Scholar 

  • Koch, A.E., Polverini, P.J., and Leibovich, S.J., 1986, Stimulation of neovascularization by human rheumatoid synovial tissue macrophages, Arthritis Rheum. 29:471.

    Article  PubMed  CAS  Google Scholar 

  • Leibovich, S.J., and Ross, R., 1975, The role of the macrophage in wound repair: a study with hydrocortisone and antimacrophage serum, Am. J. Pathol. 78:71.

    PubMed  CAS  Google Scholar 

  • Leibovich, S.J., and Ross, R., 1976, A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro, Am. J. Pathol. 84:501.

    CAS  Google Scholar 

  • Mantovani, A., Giavazzi, R., Polentarutti, N., Spreafico, F., and Garattini, S., 1980, Divergent effects of macrophage toxins on growth of primary tumor and lung metastases in mice, Int. J. Cancer 25:617.

    Article  PubMed  CAS  Google Scholar 

  • McGill, J.S., Moroco, J.R., and Polverini, P.J., 1991, Transient inactivation of an angiogenesis suppressor gene during palatogenesis. J. Dent. Res. 70:515.

    Google Scholar 

  • Moroco, J.R., Solt, D.B., and Polverini, P.J., 1990, Sequential loss of suppressor genes for three specific functions during in vivo carcinogenesis, Lab. Tnvest. 63:298.

    CAS  Google Scholar 

  • Moroco, J.R., McGill, J.S., and Polverini, P.J., 1991, Angiogenesis suppressor gene inactivation in differentiated stem cells and teratocarcinomas. J. Dent. Res. 70:595.

    Google Scholar 

  • Mostafa, L.K., Jones, D.B., and Wright, D.H., 1980, Mechanisms of the induction of angiogenesis by human neoplastic lymphoid tissue: studies on the chorioallantoic membrane (CAM) of the chick embryo, J. Pathol. 132:191.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, C., 1987, Secretory products of macrophages, J. Clin. Tnvest. 79:319.

    Article  CAS  Google Scholar 

  • Polverini, P.J., Macrophage-induced angiogenesis: a review: in: “Cytokines,” C. Sorg. ed., S. Karger, Basel (1989).

    Google Scholar 

  • Polverini, P.J., Cotran, R.S., and Sholley, M.M., 1977a, Endothelial proliferation in the delayed hypersensitivity response: an autoradiographic study, J. Tmmunol. 118:529.

    CAS  Google Scholar 

  • Polverini, P.J., Cotran, R.S., Gimbrone, M.A.Jr., and Unanue, E.R., 1977b, Activated macrophages induce vascular proliferation, Nature 269:804.

    Article  CAS  Google Scholar 

  • Polverini, P.J., and Leibovich, S.J., 1984, Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor associated macrophages, Lab. Invest. 51:635.

    PubMed  CAS  Google Scholar 

  • Rappolee, D.A., Mark, D., Banda, M.J., and Werb, Z., 1988, Wound macrophages express TGF-α and other growth factors in vivo: analysis by mRNA phenotyping, Science 241:708.

    Article  PubMed  CAS  Google Scholar 

  • Polverini, P.J., Shimizu, K., and Solt, D.B., 1988, Control of angiogenic activity in carcinogen-initiated and neoplastic hamster pouch keratinocytes and their hybrid cells, J Oral Pathol. 18:522.

    Article  Google Scholar 

  • Rastinejad, F., Polverini, P.J., and Bouck, N.P., 1989, Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene, Cell 56:345.

    Article  PubMed  CAS  Google Scholar 

  • Stenzinger, W., Bruggen, J., Macher, E., and Sorg, C., 1983, Tumor angiogenic activity (TAA) production in vitro and growth in the nude mouse by human malignant melanoma, Bur. J. Cancer Clin. Onnol. 19:649

    CAS  Google Scholar 

  • Thakral, K.K., Goodson, W.H., and Hunt, T.K., 1979, Stimulation of wound blood vessel growth by wound macrophages, J. Surg. Res. 26:430.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Polverini, P.J., DiPietro, L.A. (1992). Role of the Macrophage in the Regulation of Physiological and Pathological Angiogenesis. In: Maragoudakis, M.E., Gullino, P., Lelkes, P.I. (eds) Angiogenesis in Health and Disease. NATO ASI Series, vol 227. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3358-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3358-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6481-8

  • Online ISBN: 978-1-4615-3358-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics