Finite Temperature Correlated Mean Field Treatments and Information Theory

  • R. Rossignoli
  • A. Plastino
Part of the Condensed Matter Theories book series (COMT, volume 7)


A general self-consistent scheme for approximating statistical operators is discussed within the context of Information Theory. As an application, a special correlated finite temperature mean field approximation is derived and applied to many-fermion systems. A substantial improvement over conventional approaches such as finite temperature Hartree-Fock and finite temperature BCS is obtained in finite systems.


Density Operator Finite Temperature Finite System Correlate Approach Pairing Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.J. Thouless, The Quantum Mechanics of Many Body Systems (Academic, New York, 1972).Google Scholar
  2. [2]
    A.L. Goodman, Nucl. Phys. A352 (1981) 30; A352 (1981) 45.Google Scholar
  3. [3]
    P. Ring, L. Robledo, J.L. Egido and M. Faber, Nucl. Phys. A419 (1984) 261;ADSGoogle Scholar
  4. J.L. Egido, P. Ring and H.J. Mang, Nucl.Phys. A451 (1986) 77.ADSGoogle Scholar
  5. [4]
    H.G. Miller, R.M. Quick and B.J. Cole, Phys.Rev. C39 (1989) 1599.ADSGoogle Scholar
  6. [5]
    R. Rossignoli, and A. Plastino, Phys. Rev. C32 (1985) 1040.ADSGoogle Scholar
  7. [6]
    R. Rossignoli, A. Plastino and J. Vary, Phys. Rev. C37 (1988) 314.ADSGoogle Scholar
  8. [7]
    R. Rossignoli, and A. Plastino, Phys. Rev. C40 (1989) 1798.ADSGoogle Scholar
  9. [8]
    R. Rossignoli, and A. Plastino, Phys. Rev. A42 (1990) 2065.ADSGoogle Scholar
  10. [9]
    E.T. Jaynes, Phys. Rev 106 (1957) 620; 108 (1957) 171.Google Scholar
  11. [10]
    R. Balian, Y. Alhassid and H. Reinhardt, Phys.Rep. 131 (1986) 1.MathSciNetADSCrossRefGoogle Scholar
  12. [11]
    R. Balian and M. Veneroni, Ann. of Phys. 164 (1985) 334; 174 (1987) 229.Google Scholar
  13. [12]
    R. Rossignoli, H.G. Miller and A. Plastino, Phys. Rev. C42 (1991) 314; Journal of Physics G, (1991), (in press).Google Scholar
  14. [13]
    R. Rossignoli, Nucl. Phys. A (1991) (in press).Google Scholar
  15. [14]
    R. Rossignoli, R.M. Quick and H.G. Miller, to be published.Google Scholar
  16. [15]
    R. Kubo, J. Phys. Soc. Jpn. 12 (1957) 570; Rep. Pogr. Phys. 29 (1966) 225.Google Scholar
  17. [16]
    P. Ring and P. Schuck, The Nuclear Many Body Problem (Springer-Verlag, New York, 1980).CrossRefGoogle Scholar
  18. [17]
    H. Reinhardt, R. Balian and Y. Alhassid, Nucl. Phys. A422 (1984) 349.MathSciNetADSGoogle Scholar
  19. [18]
    M.C. Cambiaggio and A. Plastino, Zeit. Phys. A288 (1978) 153.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • R. Rossignoli
    • 1
  • A. Plastino
    • 1
  1. 1.Departamento de FísicaUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations