Fatigue Behavior of Sintered Si3N4 under Rotary Bending and Static Fatigue

  • H. N. Ko
Part of the Fracture Mechanics of Ceramics book series (FMOC, volume 9)

Abstract

Rotary bending and static fatigue tests were carried out at room temperature on sintered Si3N4 whose diameters were 8 and 6 mm. An Ono’s rotary bending fatigue testing machine was used on the operating condition of 3420 cycles per minute. The rotary bending test was performed within the range 104 to 109 stress-cycles. Besides, the static fatigue test was performed for less than 107 seconds using the non-rotating fatigue machine. The fatigue behavior under rotary bending was different from that under static fatigue. The value of n under rotary bending was much smaller than that under static fatigue, in the expressions of σn N = constant and σn t = constant, and the assumed fatigue limit for the former was lower than that for the latter. However, both assumed fatigue limits showed the similar relationships between the strengths and the specimen sizes. The characteristic appearance of mirror-like regions on the fractured surfaces after both fatigue tests were almost the same as those after the static test. The size of each mirror-like region was found to have stronger correlation with the applied stress than with the loading condition. Stress intensity factor at the deepest point in the mirror-like region was also nearly constant. No remarkable difference between fatigue fractured morphology and static fractured one could be found even under microscopic observation. The existence of the fatigue limit, the basic character of rotary bending strength, the size effect on the assumed fatigue limit and the fatigue fracture features are discussed on the basis of the results.

Keywords

Fatigue Estima 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. N. Ko, J. Ceram. Soc. Japan, 94, 534 (1986); ibid., 95, 472 (1987).Google Scholar
  2. 2.
    H. N. Ko, J. Mat. Sci. Lett., 6, 175 (1987).CrossRefGoogle Scholar
  3. 3.
    H. N. Ko, Proc. of the MRS International Meeting on Advanced Materials, 5, Materials Research Society, Pittsburgh (1989)P.43.Google Scholar
  4. 4.
    H. P. Kirchner and R. M. Gruver, Fracture Mechanics of Ceramics, 1, Plenum Press, New York (1974)P.309.Google Scholar
  5. 5.
    Kyocera, Private communication.Google Scholar
  6. 6.
    M. Masuda, N. Yamada, T. Soma, M. Matsui and I. Oda, J. Ceram. Soc. Japan, 97, 520 (1989).CrossRefGoogle Scholar
  7. 7.
    H. N. Ko, J. Mat. Sci. Lett., 5, 464 (1986); ibid., 6, 801 (1987).Google Scholar
  8. 8.
    H. N. Ko, J. Mat. Sci. Lett., 8, 1438 (1989).CrossRefGoogle Scholar
  9. 9.
    H. N. Ko, J. Ceram. Soc. Japan, 97, 599 (1989).Google Scholar
  10. 10.
    M. Masuda, T. Soma, M. Matsui and I. Oda, J. Ceram. Soc. Japan, 96, 277 (1988).CrossRefGoogle Scholar
  11. 11.
    Y. Yamauchi, S. Sakai, M. Ito, T. Ohji, W. Kanematsu and S. Ito, J. Ceram. Soc. Japan, 96, 885 (1988).CrossRefGoogle Scholar
  12. 12.
    T. Kawakubo and K. Amano, Proc. of the 32th Japan National Symposium on Strength, Fracture and Fatigue, Anzen-Kyodo-Kenkyu-Kyokai, Sendai (1987)P.1.Google Scholar
  13. 13.
    Y. Yamauchi, S. Sakai, M. Ito, T. Ohji, W. Kanematsu and S. Ito, J. Ceram. Soc. Japan, 94, 631 (1986).Google Scholar
  14. 14.
    T. Kawakubo and A. Goto, J. Soc. Mat. Sci. Japan, 37, 939 (1988).CrossRefGoogle Scholar
  15. 15.
    H. Kishimoto, A. Ueno, H. Kawamoto, J. Soc. Mat. Sci. Japan, 36, 1122 (1987).CrossRefGoogle Scholar
  16. 16.
    H. Sugawara, A. Otsuka and T. Amano, Paper presented at the 20th Symposium on Fatigue, J. Soc. Mat. Sci. Japan (1990)P.158.Google Scholar
  17. 17.
    H. Kishimoto, A. Ueno, H. Kawamoto and Y. Fujii, J. Soc. Mat. Sci. Japan, 38, 1212 (1989).CrossRefGoogle Scholar
  18. 18.
    H. N. Ko, J. Mat. Sci. Lett., 10, 545 (1991).CrossRefGoogle Scholar
  19. 19.
    D. G. S. Davies, Proc. Brit. Ceram. Soc., 22, 429 (1973).Google Scholar
  20. 20.
    K. Saruki, K. Ogawa and T. Asano, Trans. Japan Soc. Mech. Engrs., 54-A, 2082 (1988).Google Scholar
  21. 21.
    Y. Murakami and H. Tsuru, Stress Intensity Factors Handbook, Pergamon Press, Tokyo (1987)P.657.Google Scholar
  22. 22.
    K. Niihara, R. Morena and D. P. H. Hasselman, J. Mat. Sci. Lett., 1, 13 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • H. N. Ko
    • 1
  1. 1.Nakanihon Automotive CollegeSakahogi-cho, Kamo-gun, Gifu-kenJapan

Personalised recommendations