Advertisement

Crack-Resistance Curve and Cyclic Fatigue in Ceramic Materials

  • Yiu-Wing Mai
  • Xiaozhi Hu
  • Kai Duan
  • Brian Cotterell
Part of the Fracture Mechanics of Ceramics book series (FMOC, volume 9)

Abstract

Despite their very high strength and high stiffness ceramics are usually quite brittle and suffer from a lack of fracture toughness. In recent years there have been considerable efforts to toughen these materials by promoting failure mechanisms that would shield the crack tip from the applied stress intensity factor. Such mechanisms include phase transformation, microcracking, localised grain bridging and fibre bridging which normally give rise to long range crack-resistance (R) curves; other mechanisms such as crack deflection, bowing and pinning only result in short range R-curves. Reviews on this subject have been given by Mai (1988; 1991) recently. Also, the relationship between strength and toughness or R-curve has been studied by Mai and Lawn (1986), particularly in the range of short crack lengths.

Keywords

Cyclic Loading Crack Growth Rate Fatigue Crack Growth Fracture Process Zone Monotonic Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvaredo, A.M., Hu, X-Z. and Wittmann, F.H., 1989, A numerical study of the fracture process zone, in: “Fracture of Concrete and Rock: Recent Developments,” S.P. Shah, S.E. Swartz and B. Barr, eds., Elsevier, London.Google Scholar
  2. Atkins, A.G. and Mai, Y-W., 1985, “Elastic and Plastic Fracture: Metals, Polymer, Ceramics, Composites, Biological Materials,” Ellis Horwood Limited, London.Google Scholar
  3. Becher, P.F., 1981, Transient thermal stress behaviour in ZrO2 toughened Al2O3,“ J. Amer. Ceram. Soc., 64:37.CrossRefGoogle Scholar
  4. Becher, P.F. and Tennery, V.T., 1983, Fracture toughness of Al203-Zr02 composites, in: “Fracture Mechanics of Ceramics,” R.C. Bradt, A.G. Evans, D.P.H. Hasselman and F.F. Lange, eds., Plenum Press, New York-London.Google Scholar
  5. Budiansky, B., Hutchinson, J.W. and Lambropoulos, J.C., 1983, Continuum theory of dilatant transformation toughening in ceramics, Int. J. Solids Struct., 19:337.CrossRefGoogle Scholar
  6. Cardona, D.C. and Beevers, C.J., 1990, Formation and growth of short fatigue cracks in a zirconia-ceria alloy, Scripta Metall., 23:945.Google Scholar
  7. Claussen, N., 1976, Fracture toughness of Al2O3 with an unstabilised ZrO2 dispersed phase, J. Amer. Ceram. Soc., 59:49.CrossRefGoogle Scholar
  8. Claussen, N., 1984, Microstructural design of zirconia-toughened ceramics (ZTC), in: “Advance in Ceramics,” N. Claussen, M. Ruhle and A.H. Heuer, eds., American Ceramic Society, Columbus.Google Scholar
  9. Claussen, N., Steeb, J. and Pabst, R.F., 1977, Effect of induced microcracking on the fracture toughness of ceramics, Amer. Ceram. Soc. Bull., 56:559.Google Scholar
  10. Cotterell, B. and Mai, Y-W., 1988, Modelling crack growth in fibre-reinforced cementitious materials, Materials Forum, 25:1427.Google Scholar
  11. Dauskardt, R.H., Carter, W.C., Veirs, D.K. and Ritchie, R.O., 1990a, Transient subcritical crack-growth behaviour in transformation-toughened ceramics, Acta Metall., 38:2327.CrossRefGoogle Scholar
  12. Dauskardt, R.H., Marshall, D.B. and Ritchie, R.O., 1990b, Cyclic fatigue-crack propagation in magnesia-partially-stabilized zirconia ceramics, J. Amer. Ceram. Soc., 73:893.CrossRefGoogle Scholar
  13. Dauskardt, R.H. and Ritchie, R.O., 1989, Cyclic fatigue crack growth behaviour in ceramics, Closed Loop, 17:7.Google Scholar
  14. Dauskardt, R.H., Yu, W. and Ritchie, R.O., 1987, Fatigue crack propagation in transformation-toughened zirconia ceramic, J. Amer. Ceram. Soc., 70:C-248.CrossRefGoogle Scholar
  15. Davidson, D.L., Campbell, J.B. and Lankford, J., 1991, Fatigue crack growth through partially stabilized zirconia at ambient and elevated temperature, to be published in Acta Metall. Google Scholar
  16. Duan, K., Cotterell, B. and Mai, Y-W., 1991a, Static fatigue in dilatant zone toughened ceramics, presented at 23rd National Symposium on Fracture Mechanics, College Station, Texas.Google Scholar
  17. Duan, K., Cotterell, B. and Mai, Y-W., 1991b, Crack growth in zirconia bearing ceramics under cyclic loading, presented at Int. Conf. Fracture Mechanics of Ceramics, Nagoya.Google Scholar
  18. Duan, K., Mai, Y-W. and Cotterell, B., 1988, A statistical fracture mechanics analysis of time-dependent strength behaviour of partially stabilised zirconia, J. Mater. Sci., 23:3671.CrossRefGoogle Scholar
  19. Duan, K., Mai, Y-W. and Cotterell, B., 1990a, R-curve effect on statistical fracture behaviour of ceramics, in: “Proceedings Austceram ‘80,” P.J. Darragh and R.J. Stead, eds., Perth.Google Scholar
  20. Duan, K., Mai, Y-W. and Cotterell, B., 1991, Cyclic fatigue of a sintered Al2O3/ZrO2 composite, submitted to J. Amer. Ceram. Soc. Google Scholar
  21. Evans, A.G., 1980, Fatigue in ceramics, Int. J. Fract., 16:485.CrossRefGoogle Scholar
  22. Evans, A.G. and Cannon, R.M., 1986, Toughening of brittle solids by martensitic transformations, Acta Metall., 34:761.CrossRefGoogle Scholar
  23. Evans, A.G. and Fuller, E.R., 1974, Crack propagation in ceramic materials under cyclic loading conditions, Met. Trans., 5:1974.Google Scholar
  24. Evans, A.G. and Heuer, A.H., 1980, Review: transformation toughening in Ceramics: martensitic transformation in crack tip stress fields, J. Amer. Ceram. Soc., 63:241.CrossRefGoogle Scholar
  25. Foote, R.M.L., Mai, Y-W. and Cotterell, B., 1986, Crack growth resistance curves in strain-softening materials, J. Mech. Phys. Solids, 34:593.CrossRefGoogle Scholar
  26. Garvie, R.C. and Goss, M.F., 1986, Thermal shock resistant alumina/zirconia alloys, in: “Advanced Ceramics II,” S. Sómiya, ed., Elsevier, London.Google Scholar
  27. Grathwohl, G. and Liu, T., 1991a, Crack resistance and fatigue of transforming ceramics: I, materiala in the Zr02-Y2O3-Al2O3 system, J. Amer. Ceram. Soc., 74:318.CrossRefGoogle Scholar
  28. Grathwohl, G. and Liu, T., 1991b, Crack resistance and fatigue of transforming ceramics: II, CeO2-stabilized tetragonal ZrO2, to be published in J. Amer. Ceram. Soc. Google Scholar
  29. Guiu, F., Reece, M.J. and Vaughan, D.A.J., 1991a, Cyclic fatigue in some structural ceramics, presented at the Engineering Foundation Conference on Mechanical Fatigue of Advanced Materials, Santa Barbara, California.Google Scholar
  30. Guiu, F., Reece, M.J. and Vaughan, D.A.J., 1991b, Cyclic fatigue of ceramics, J. Mater. Sci., 26:3275.CrossRefGoogle Scholar
  31. Gurney, C. and Pearson, S., 1948, Fatigue of mineral glass under static and cyclic loading, Proc. Roy. Soc. London, A192:537.Google Scholar
  32. Hannink, R.H.J. and Swain, M.V., 1982, Magnesia-partially stabilised zirconia: the influence of heat treatment on thermomechanical properties, J. Aust. Ceram. Soc., 18:53.Google Scholar
  33. Heuer, A.H., Readey, M.J. and Steinbrech, R., 1988, Resistance curve behavior of supertough MgO partially stabilised ZrO2, Mater. Sci. Eng., A108/109:83.Google Scholar
  34. Hu, X-Z. and Mai, Y-W., 1991a, A general method for determination of crack interface bridging stresses, J. Mater. Sci., in press.Google Scholar
  35. Hu, X-Z. and Mai, Y-W., 1991b, Crack-bridging analysis for alumina ceramics under monotonic and cyclic loading, J. Amer. Ceram. Soc., in press.Google Scholar
  36. Hu, X-Z. and Mai, Y-W., 1991c, Mode-I delamination and fibre-bridging in carbon fibre epoxy composites with and without PVAL coating, Comp. Sci. & Tech., to be published.Google Scholar
  37. Hu, X-Z. and Wittman, F.H., 1989, Fracture process zone and Kr-curve of hardened cement paste and mortar, in: “Fracture of Concrete and Rock: Recent Developments,” S.P. Shah, S.E. Swartz and B. Barr, eds., Elsevier, London.Google Scholar
  38. Hu, X-Z. and Wittman, F.H., 1990, Experimental method to determine extension of fracture process zone, J. Mater. Civil Eng., 2:15.CrossRefGoogle Scholar
  39. Hu, X-Z. and Wittman, F.H., 1991, An analytical method to determine the bridging stress transferred within the fracture process zone, Cement and Concrete Research, in press.Google Scholar
  40. Hu, X-Z., Cotterell, B. and Mai, Y-W., 1985, A theory of statistical fracture in a two-phase brittle material, Proc. Roy. Soc. London, A401:251.Google Scholar
  41. Hu, X-Z., Lutz, E.H. and Swain, M.V., 1991, Crack tip bridging stresses in ceramic materials, J. Amer. Ceram. Soc., in press.Google Scholar
  42. Hu, X-Z., Mai, Y-W. and Cotterell, B., 1988, A statistical theory of time-dependent fracture for brittle materials, Phil. Mag., A58:299.Google Scholar
  43. Hu, X-Z., Mai, Y-W. and Cotterell, B., 1991, Time-dependent fracture of two-phase brittle materials, Phil. Mag., to be published.Google Scholar
  44. Hu, X-Z., Mai, Y-W. and Cotterell, B., 1989, A statistical theory of time-dependent fracture for cementitious materials subjected to cyclic loading, J. Mater. Sci., 24:3118.CrossRefGoogle Scholar
  45. Hu, X-Z., Mai, Y-W. and Lathabai, S., 1991, Compliance analysis of a bridged-crack under monotonic and cyclic loading, J. Euro. Ceram. Soc., in press.Google Scholar
  46. Hunt, R.A. and McCartney, L.N., 1979, A new approach to Weibull statistical theory of brittle fracture, Int. J. Fracture, 15:365.Google Scholar
  47. Hutchinson, J.W., 1974, On steady quasi-static crack growth, Report DEAP S-8, Harvard University, Cambridge.Google Scholar
  48. Iio, S., Niwa, T., Tajima, Y. and Watanabe, M., 1991, Crack propagation behaviour in gas pressure sintered silicon nitride, presented at 4th Int. Symp. on Ceramic Materials and Components for Engines, Goteborg, Sweden.Google Scholar
  49. Kendall, K., Alford, N.McN. and Birchall, J.D., 1987, Weibull modulus of toughened ceramics, in: “Materials Research Society Symposia Proceedings, Vol. 78, Advanced Structural Ceramics,” P.F. Becher, M.V. Swain and S. Somiya, eds., Materials Research Society, Pittsburgh.Google Scholar
  50. Kendall, K., Alford, N.McN., Tan, S.R. and Birchall, J.D., 1986, Influence of toughness on Weibull modulus of ceramic bending strength, J. Mater. Res., 1:120.CrossRefGoogle Scholar
  51. Knehans, R. and Steinbrech, R.W., 1982, Memory effect of crack resistance during slow crack growth in notched Al203 bend specimens, J. Mater. Sci. Lett., 1:327.CrossRefGoogle Scholar
  52. Kosmac, T., Swain, M.V. and Claussen, N., 1985, The role of tetragonal and monoclinic Zr02 particles in the fracture toughness of Al203-Zr02 composites, Mater. Sci. Eng., 71:57.CrossRefGoogle Scholar
  53. Krohn, D.A. and Hasselman, D.P.H., 1972, Static and cyclic fatigue behaviour of a polycrystalline alumina, J. Amer. Ceram. Soc., 55:208.CrossRefGoogle Scholar
  54. Lai, T.R., Hogg, C.L. and Swain, M.V., 1989, Evaluation of fracture toughness and R-curve behaviour of Y-TZP ceramics, ISIJ International, 29–3:240.Google Scholar
  55. Lange, F.F., 1982, Transformation toughening, J. Mater. Sci., 17:247.CrossRefGoogle Scholar
  56. Lathabai, S., Mai, Y-W. and Lawn, B.R., 1989, Cyclic fatigue behaviour of an alumina ceramics with crack-resistance characteristics, J. Amer. Ceram. Soc., 72:1760.CrossRefGoogle Scholar
  57. Lathabai, S., Rodel, J. and Lawn, B.R., 1991, Cyclic fatigue from frictional degradation at bridging grains in alumina, J. Amer. Ceram. Soc., in press.Google Scholar
  58. Lentz, W., Mai, Y-W., Swain, M.V. and Cotterell, B., 1990, Time-dependent strength behaviour of Mg-PSZ with R-curve characteristics, in: “Proc. Austceram ‘80, Key Engineering Materials, Vol. 48–50,” P.J. Darragh and R.J. Stead, eds., Perth.Google Scholar
  59. Liu, S-Y. and Chen, I-W., 1989, Fatigue of yttria-stabilised zirconia I: fatigue damage, fracture origins and lifetime prediction, J. Amer. Ceram. Soc., 74:1197.CrossRefGoogle Scholar
  60. Liu, S-Y. and Chen, I-W., 1990, Fatigue of yttria-stabilised zirconia II: crack propagation, fatigue striations and short crack behaviour, J. Amer. Ceram. Soc., 74:1206.CrossRefGoogle Scholar
  61. Liu, S-Y. and Chen, I-W., 1991, “Fatigue of yttria-stabilised zirconia I & II,” presented at the Engineering Foundation Conference on Mechanical Fatigue of Advanced Materials, Santa Barbara.Google Scholar
  62. Liu, T., 1990, Ph.D. thesis, Karlsruhe University, Germany.Google Scholar
  63. Mai, Y-W., 1988, Fracture resistance and fracture mechanics of engineering materials, Materials Forum, 11:232.Google Scholar
  64. Mai, Y-W., 1990, Failure characterisation of fibre reinforced cement composites with R-curve characteristics, in: “Toughening Mechanisms in Quasi-Brittle Materials,” S.P. Shah, ed., Kluwer, Dordrecht.Google Scholar
  65. Mai, Y-W., 1991, Fracture and fatigue of non-transformable ceramics: the role of crack interface bridging, in: “Fracture Processes in Concrete, Rock and Ceramics,” Vol. 1, J.G.M. van Mier, J.G. Rots and A. Bakker, eds., E & FN Spon, London.Google Scholar
  66. Mai, Y-W. and Hakeem, M.I., 1984, Slow crack growth in cellulose fibre cements, J. Mater. Sci., 19:501.CrossRefGoogle Scholar
  67. Mai, Y-W. and Lawn, B.R., 1986, Crack stability and toughness in brittle materials, Ann. Rev. Mater. Sci., 16:415.CrossRefGoogle Scholar
  68. Mai, Y-W. and Lawn, B.R., 1987, Crack interface grain bridging as a fracture resistance mechanism in ceramics: II, theoretical fracture mechanics model, J. Amer. Ceram. Soc., 70(4):289.CrossRefGoogle Scholar
  69. Marshall, D.B. and Swain, M.V., 1988, Crack resistance curves in magnesia-partially stabilised zirconia, J. Amer. Ceram. Soc., 71:399.CrossRefGoogle Scholar
  70. McMeeking, R.M. and Evans, A.G., 1982, Mechanics of transformation toughening in brittle materials, J. Amer. Ceram. Soc., 65:242.CrossRefGoogle Scholar
  71. Porter, D.L. and Heuer, A.H., 1977, Mechanisms of toughening partially stabilised zirconia (PSZ), J. Amer. Ceram. Soc., 60:183.CrossRefGoogle Scholar
  72. Porter, D.L. and Heuer, A.H., 1979, Microstructural development in Mg-partially stabilised zirconia (Mg-PSZ), J. Amer. Ceram. Soc., 62:298.CrossRefGoogle Scholar
  73. Porter, D.L., Evans, A.G. and Heuer, A.H., 1979, Transformation toughening in partially stabilised zirconia (PSZ), Acta Metall., 27:1649.CrossRefGoogle Scholar
  74. Readey, M.J., Heuer, A.H. and Steinbrech, R.W., 1987, Crack propagation in Mg-PSZ, in: “Materials Research Society Symposia Proceedings, Vol. 78, Advanced Structural Ceramics,” P.F. Becher, M.V. Swain and S. Sómiya, eds., Materials Research Society, Pittsburgh.Google Scholar
  75. Reece, M.J., Guiu, F. and Sammur, M.F.R., 1989, Cyclic fatigue crack propagation in alumina under direct tension-compression loading, J. Amer. Ceram. Soc., 72:348.CrossRefGoogle Scholar
  76. Ritchie, R.O., Dauskardt, R.H. and Cox, B.N., 1991, Final Report to the Engineering Foundation on an International Conference on Mechanical Fatigue of Advanced Materials, Santa Barbara.Google Scholar
  77. Rodel, J., Kelly, J.F. and Lawn, B.R., 1991, In situ measurements of bridged crack interfaces in the SEM, J. Amer. Ceram. Soc., 73:3313.CrossRefGoogle Scholar
  78. Steinbrech, R.W., Reichl, A. and Schaarwachter, W., 1990, R-curve behaviour of long cracks in alumina, J. Amer. Ceram. Soc., 73:2009.CrossRefGoogle Scholar
  79. Swain, M.V., 1983, R-curve behaviour of magnesia-partially stabilised zirconia and its significance for thermal shock, in: “Fracture Mechanics of Ceramics,” R.C. Bradt, A.G. Evans, D.P.H. Hasselman and F.F. Lange, eds., Plenum Press, New York-London.Google Scholar
  80. Swain, M.V., 1985, Inelastic deformation of Mg-PSZ and its significance for strength-toughness relationship of zirconia toughened ceramics, Acta Metall., 33:2083.CrossRefGoogle Scholar
  81. Swain, M.V., 1986a, R-curve behaviour in a polycrystalline alumina material, J. Mater. Sci. Lett., 5:1313.CrossRefGoogle Scholar
  82. Swain, M.V., 1986b, R-curve behaviour in ceramic materials, in: “Advanced Ceramics II,” S. Sómiya, ed., Elsevier, London.Google Scholar
  83. Swain, M.V., 1986c, Lifetime prediction of ceramic materials, Mater. Forum, 9:34.Google Scholar
  84. Swain, M.V. and Hannink, R.H.J., 1984, R-curve behaviour in zirconia ceramics, in: “Advance in Ceramics, Vol. 12, Science and Technology of Zirconia II,” N. Claussen, M. Rühle and A.H. Heuer, eds., American Ceramic Society, Columbus.Google Scholar
  85. Swain, M.V. and Rose, L.R.F., 1986, Strength limitations of transformation-toughened zirconia alloys, J. Amer. Ceram. Soc., 69:511.CrossRefGoogle Scholar
  86. Swain, M.V. and Zelizko, V., 1988, Comparison of the static and cyclic fatigue on Mg-PSZ alloys, in: “Advances in Ceramics, Vol. 24, Science and Technology of Zirconia III,” S. Sömiya, N. Yamamoto and H. Yanagida, eds., American Ceramic Society, Columbus.Google Scholar
  87. Swain, M.V., Schneider, G.H. and Zelizko, V., 1991, “Small Crack behaviour in ceramics; direct observations and inferences from strength data,” presented at the Engineering Foundation Conference on Mechanical Fatigue of Advanced Materials, Santa Barbara.Google Scholar
  88. Swanson, P.L., Fairbanks, C.J., Lawn, B.R., Mai, Y-W. and Hockey, B.J., 1987, Crack interface grain bridging as a fracture resistance mechanism in ceramics: I, experimental study on alumina, J. Amer. Ceram. Soc., 70:279.CrossRefGoogle Scholar
  89. Sylva, L.A. and Suresh, S., 1989, Crack growth in transforming ceramics under cyclic tensile loads, J. Mater. Sci., 24:1729.CrossRefGoogle Scholar
  90. Tsai, J-F., Yu, C-S. and Shetty, D.K., 1990 Fatigue crack propagation in ceria-partially stabilised zirconia (Ce-PSZ)-alumina composites, J. Amer. Ceram. Soc., 73:2992.CrossRefGoogle Scholar
  91. Wang, J. and Stevens, R., 1988, Toughening mechanisms in duplex alumina-zirconia ceramics, J. Mater. Sci., 23:804.CrossRefGoogle Scholar
  92. Wang, J. and Stevens, R., 1989, Review: zirconia-toughened alumina (ZTA) ceramics, J. Mater. Sci., 24:3421.CrossRefGoogle Scholar
  93. Yu, C-S. and Shetty, D.K., 1989, Transformation zone shape, size and crack-growth resistance (R-curve) behaviour of ceria-partially stabilised zirconia polycrystals, J. Amer. Ceram. Soc., 72:921.CrossRefGoogle Scholar
  94. Yu, C-S. and Shetty, M.V., 1990, Transformation yielding, plasticity and crack-growth resistance (R-curve) behaviour of CeO2-TZP, J. Mater. Sci., 5:2025.CrossRefGoogle Scholar
  95. Zelizko, V. and Swain, M.V., 1988, Influence of surface preparation on the rotational flexural fatigue of Mg-PSZ, J. Mater. Sci., 23:1077.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Yiu-Wing Mai
    • 1
  • Xiaozhi Hu
    • 1
  • Kai Duan
    • 1
  • Brian Cotterell
    • 1
  1. 1.Centre for Advanced Materials TechnologyUniversity of SydneyAustralia

Personalised recommendations