Analysis for Strength Degradation of Indented Specimens Due to Thermal Shock

  • J. H. Gong
  • Z. D. Guan
  • D. C. Jiang
Part of the Fracture Mechanics of Ceramics book series (FMOC, volume 10)


An analysis is proposed for the crack propagation and strength degradation in ceramics subjected to thermal shock with a Vickers indented specimen. In this analysis, fracture mechanical approach of indentation flaw, which is used to simulate the natural surface damage in materials, is applied to determine the driving force for crack propagation and the retained strength of specimens due to thermal shock. The analysis provides a functional relationship between the retained strength and the extent of crack propagation;the latter is a function of the temperature difference of thermal shock, ΔT. When ΔT is less than the critical value, ΔTc, the extent of crack propagation is small and the associate retained strength is invariant and independent of ΔT. When ΔT≥ΔTc, however, the crack dimension will extend above a critical value, cm, due to thermal shock, then causes an evident degradation in retained strength. It is confirmed in experiments that the proposed analysis seems to give a more realistic prediction than the conventional model.


Residual Stress Thermal Shock Strength Degradation Quench Test Indentation Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    D.P.H. Hasselman, J. Am. Ceram. Soc., 52 (1969) 600–4CrossRefGoogle Scholar
  2. (2).
    T.K. Gupta, J. Am. Ceram. Soc., 55 (1972) 249–53CrossRefGoogle Scholar
  3. (3).
    K. Matsuskita, A. Kuratani, et al., J. Mater. Sci. Lett., 3 (1984) 345–48CrossRefGoogle Scholar
  4. (4).
    J.R.E. Evans, R. Stevens, and S.R. Tan, J. Mater. Sci., 19 (1984) 4068–76CrossRefGoogle Scholar
  5. (5).
    R. Badaliance, D.A. Krohn, and D.P.H. Hasselman, J. Am. Ceram. Soc., 57 (1974) 432–36CrossRefGoogle Scholar
  6. (6).
    K.T. Faber, M.D. Huang, and A.G. Evans, J. Am. Ceram. Soc., 64 (1981) 296–301CrossRefGoogle Scholar
  7. (7).
    M.V. Swain; pp.257–72 in “Fracture Mechanics of Ceramics”, Vol.3. Edited by R.C. Bradt, D.P.H. Hasselman, and F.F. Lange. Plenum, New York (1977)Google Scholar
  8. (8).
    D.B. Marshall, J. Am. Ceram. Soc., 66 (1983) 127–31CrossRefGoogle Scholar
  9. (9).
    A.G. Evans, M. Linzer, et. al., J. Mater. Sci., 10 (1975)1608–15CrossRefGoogle Scholar
  10. (10).
    J.E. Ritter, K. Jakus, and P. Shi, J. Am. Ceram. Soc., 71 (1988) 426–29CrossRefGoogle Scholar
  11. (11).
    D.A. Krohn and D.P.H. Hasselman, J. Am. Ceram. Soc., 56 (1973) 337–38CrossRefGoogle Scholar
  12. (12).
    Y.W. Mai and A.G. Atkins, Ceram. Bull., 54 (1975) 593Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • J. H. Gong
    • 1
  • Z. D. Guan
    • 1
  • D. C. Jiang
    • 1
  1. 1.Department of Materials Science and EngineeringTsinghua UniversityBeijingP. R. China

Personalised recommendations