Skip to main content

Creep Damage Mechanisms in Structural Ceramics

  • Chapter
Fracture Mechanics of Ceramics

Part of the book series: Fracture Mechanics of Ceramics ((FMOC,volume 10))

Abstract

The mechanisms responsible for fracture in structural ceramics at elevated temperatures are reviewed. It is seen that some features of the process are common to a wide range of materials, with quite different microstructures. These include a sensitivity to flaws or microstructural inhomogeneities which nucleate microcracks. However, it is often observed that the flaws which control failure under creep conditions are different from those responsible for fast fracture at ambient temperatures. Another common feature is the development of cracks through a process of gradual damage accumulation. There are however, differences which depend on the nature of microstructure. In pure materials and some multi-phase alloys with high volume fractions of the binder phase, the heterogeneities responsible for fracture initiation are far apart, and extensive crack growth occurs prior to failure. Such materials are crack growth dependent. In multiphase alloys in which the binder is a minor phase, the high degree of constraint produces many sites for damage to nucleate. However, the low ductility and damage tolerance of such materials leads to failure after only a modest amount of crack propagation. In such materials, modified Monkman-Grant behaviour is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argon, A. S., Chen, I.-W. and Lau, C. W., 1980, Intergranular cavitation in creep: theory and experiments, in Creep-Fatigue-Interactions, eds. R. M. Pelloux and N. S. Stoloff, The Metallurgiacal Society of AIME, pp. 46–85.

    Google Scholar 

  • Ashby, M. F., Gandhi, C., and Taplin, D. M. R., 1979, Overview no. 3, Fracture mechanism maps and their construction for f.c.c. metals and alloys, Acta Metall., 27, 699–729.

    Article  CAS  Google Scholar 

  • Carroll, D. F. and Tressler, R. E., 1985, Time-dependent strength of siliconized silicon carbide under stress at 1000°C and 1100°C, J. Amer. Ceram. Soc. 68, 143–46.

    Article  CAS  Google Scholar 

  • Carroll, D. F. and Tressler, R. E., 1987, Time dependent mechanical behaviour of silicon carbide ceramics at elevated temperatures, in High Tech Ceramics, ed P. Vincenzini, Elsevier, Amsterdam, 1335–44.

    Google Scholar 

  • Carroll, D. F., R. E. Tressler, R. E., Tsai, Y. and Near, C., 1986, High temperature mechanical properties of siliconized silicon carbide composites, in Tailoring Multiphase and Composite Ceramics, eds. R. E. Tressler, G. L. Messing, C. G. Pantano and R. E. Newnham, Plenum, 775–88.

    Chapter  Google Scholar 

  • Carroll, D. F. and Tressler, R. E., 1989, The effect of creep damage on the tensile creep behaviour of a siliconized silicon carbide, J. Amer. Ceram. Soc., 72, 49–53.

    Article  CAS  Google Scholar 

  • Chadwick and Wilkinson, 1990, Effect of annealing on creep and creep fracture in Si3N4, Proc. on 4th Intl. Conf. on Creep and Fracture of Engineering Materials and Structures, eds. B. Wilshire and R. W. Evans, Institute of Metals, pp.377–87.

    Google Scholar 

  • Chadwick, M. M. and Wilkinson, D. S., 1992, The creep behaviour of sintered silicon nitride, to be published.

    Google Scholar 

  • Chadwick, M. M., Wilkinson, D. S. and Dryden, J. R., 1992, Creep due to a non-Newtonian viscous phase, to be published.

    Google Scholar 

  • Choksi, A. H. and Porter, J. R., 1985, Creep deformation of an alumina matrix composite reinforced with silicon carbide whiskers, J. Amer. Ceram. Soc., 68, C144–45.

    Google Scholar 

  • Choksi, A. H. and Porter, J. R., 1987, Cavity development during creep deformation in alumina with a bimodal grain size distribution, J. Amer. Ceram. Soc., 70, 197–203.

    Article  Google Scholar 

  • Clarke, D. R., 1985, The high temperature deformation of a polycrystalline alumina containing an intergranular glassy phase, J. Mater. Soc., 20, 1321–32.

    Article  CAS  Google Scholar 

  • Dalgleish, B. J., Slamovich, E. B. and Evans, A. G., 1985, The duality in the creep rupture of a polycrystalline alumina, J. Amer. Ceram. Soc., 68, 575–81.

    Article  CAS  Google Scholar 

  • Dryden, J. R. Kucerovsky, D. Wilkinson, D. S. and Watt, D. F., 1989, Creep deformation due to a viscous grain boundary phase, Acta Metall., 37, 2007–15.

    Article  CAS  Google Scholar 

  • Ferber, M. K., Jenkins, M. G. and Tennery, V. J., 1990, Comparison of tension, compression and flexure creep for alumina and silicon nitride ceramics, Ceram. Eng. Sci. Proc., 11, 1028–45.

    Article  CAS  Google Scholar 

  • Gandhi, C. and Ashby, M. F., 1979, Overview no. 5, Fracture mechanism maps for materials which cleave: f.c.c., b.c.c. and h.c.p. metals and ceramics, Acta Metall., 27, 1565–1602.

    Article  CAS  Google Scholar 

  • Govila, R. K., 1980, Ceramic life prediction methods, AMMRC report no. TR80–18, Army Materials and Mechanics Research Center, Watertown, Mass.

    Google Scholar 

  • Han, L. X. and Suresh, S., 1989, High temperature failure of an alumina-silicon carbide composite under cyclic loads: meachanisms of fatigue crack tip damage, J. Amer. Ceram. Soc., 72, 1233–37.

    Article  CAS  Google Scholar 

  • Hockey, B. J., Wiederhorn, S. M., Liu, W., Baldoni, J. G. and Buljan, S.-T., 1991, Tensile creep of whisker-reinforced silicon nitride, J. Mater. Sci., 26, in press.

    Google Scholar 

  • Hsueh, C. H. and Evans, A. G., 1981, Overview 14, Creep fracture in ceramic polycrystals - II. Effects of inhomogeneity on creep rupture, Acta Metall., 29, 1907–17.

    Article  CAS  Google Scholar 

  • Jakus, K., Wiederhorn, S. M. and Hockey, B. J., 1986, Nucleation and growth of cracks in vitreous-bonded aluminum oxide at elevated temperatures, J. Amer. Cer. Soc., 69, 725–31.

    Article  CAS  Google Scholar 

  • Kromp, K. and Pabst, R. F., 1980, Uber die ermittlung con J-integralwerten bei keramischen werkstoffen im hochtemperaturbereich, Materialpruf., 22, 241–45.

    CAS  Google Scholar 

  • Marion, J. E., Evans, A. G., Drory, M. D. and Clarke, D. R.,1983, Overview no. 28, High temperature failure initiation in liquid phase sintered materials, Acta Metall, 31, 1445–57.

    Article  CAS  Google Scholar 

  • Page, R. A., Lankford, J., Chan, K. S., Hardman-Rhyne, K. and Spooner, S., 1987, Creep cavitation in liquid-phase-sintered alumina, J. Amer. Ceram. Soc., 137–45.

    Google Scholar 

  • Porter, J. R., Blumenthal, W. and Evans, A. G., 1981, Overview 14, Creep fracture in polycrystals - I. Creep cavitation effects in polycrystalline alumina, Acta Metall. 29, 1899–1906.

    Article  CAS  Google Scholar 

  • Quinn, G. D. and Quinn, J. B., 1983, Slow crack growth in hot-pressed silicon nitride, Proc. Intl. Conf on Fracture Mechanics of Ceramics, Vol. 6, eds. R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange, pp. 603–36.

    Google Scholar 

  • Quinn, G. D., 1987, Static fatigue of a siliconized silicon carbide, AMMRC report no. MTL TR87–20, Army Materials and Mechanics Research Center, Watertown, Mass.

    Google Scholar 

  • Robertson, A. G., 1989, Swelling and creep damage accumulation in hot-pressed alumina, PhD. thesis, McMaster University, Hamilton, Ontario, Canada.

    Google Scholar 

  • Robertson, A. G., Wilkinson, D. S. and Caceres, C. H., 1991, Creep and creep fracture in hot-pressed alumina, J. Amer. Ceram. Soc., 74, 915–21.

    Article  CAS  Google Scholar 

  • Tanaka, T. Nakayama, H., Okabe, N., Yamamoto, S. and Fukui, S., 1992, Creep rupture map of engineering fine ceramics, in this volume.

    Google Scholar 

  • Thouless, M. D. and Evans, A. G., 1984, Nucleation of cavities during creep of liquidphase-sintered materials, J. Amer. Ceram. Soc., 67, 721–727.

    Article  CAS  Google Scholar 

  • Tsai, R. L. and Raj, R., 1982, Creep fracture in ceramics containing small amounts of a liquid phase, Acta Metall, 30, 1043–58.

    Article  CAS  Google Scholar 

  • Wang, J. S., Stephens, J. J. and Nix, W. D., 1985, A statistical analysis of cavity nucleation at particles in grain boundaries, Acta Metall., 33, 1009–21.

    Article  CAS  Google Scholar 

  • Wiederhorn, S. M., Hockey, B. J. and Krause, R. F. Jr., 1987, Influence of microstructure on creep rupture, in Ceramic Microstructures ‘86: Role of Interfaces, J. A. Pask and A. G. Evans, eds. Plenum Press, New York, pp. 795–806.

    Google Scholar 

  • Wiederhorn, S. M., Chuck, L. Fuller, E. R. Jr. and Tighe, N. J., 1986, Creep rupture in siliconozed SiC, in Tailoring Multiphase and Composite Ceramics, eds. R. E. Tressler, G. L. Messing, C. G. Pantano and R. E. Newnham, Plenum, pp. 755–73.

    Chapter  Google Scholar 

  • Wiederhorn, S. M., Roberts, D. E., Chuang, T.-J. and Chuck, L., 1988, Damage enhanced creep in siliconized silicon carbide, J. Amer. Ceram. Soc., 71, 602–8.

    Article  CAS  Google Scholar 

  • Wiederhorn, S. M., Hockey, B. J. and Chuang, T.-J., 1991, Creep and creep rupture of structural ceramics, Proc. NATO Advanced Study Workshop on Toughening Mechanisms in Quasi-Brittle Materials, S. P. Shah, ed., Kluwer Academic Publishers, Dordrecht, pp. 555–76.

    Chapter  Google Scholar 

  • Wilkinson, D. S., 1983, Steady state crack growth in creeping solids, Proc. Intl. Conf. on Advances in Life Prediction Methods, ASME, pp. 259–67.

    Google Scholar 

  • Wilkinson, D. S., 1988, Effect of devitrification on creep deformation in glass-containing ceramics, J. Amer. Ceram., Soc., 71, 562–65.

    Article  CAS  Google Scholar 

  • Wilkinson, D. S., Caceres, C. H. and Robertson, A. G., 1991, Damage and fracture mechanisms during high temperature creep in hot-pressed alumina, J. Amer. Ceram. Soc., 74, 922–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilkinson, D.S. (1992). Creep Damage Mechanisms in Structural Ceramics. In: Bradt, R.C., Hasselman, D.P.H., Munz, D., Sakai, M., Shevchenko, V.Y. (eds) Fracture Mechanics of Ceramics. Fracture Mechanics of Ceramics, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3348-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3348-1_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6476-4

  • Online ISBN: 978-1-4615-3348-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics