Advertisement

Fracto-Emission from Ceramics at Cryogenic Temperatures

  • Shigehiro Owaki
  • Toichi Okada
  • Sumio Nakahara
  • Kiyoshi Sugihara
Part of the Fracture Mechanics of Ceramics book series (FMOC, volume 10)

Abstract

Electron emissions from fine ceramics of alumina during the fracture process (fracto-emission, FE) at cryogenic temperatures were observed and compared with those from brittle metals, glass and single crystals of SiO2 etc. The features of FEs are intended to be classified in metals and insulators, and moreover, the latter are into single and poly-crystals, and non-crystalline (glassy state). However, the FEs from alumina ceramics of polycrystalline are very similar to those from sodium silicate glass and pure fused silica, but are different from those from synthetic quartz (single crystal) especially for fracture at room temperature. From experimental results, it is supposed that they depend on the fracture modes, fracture strength and electronic properties for generation of free electrons and its compensation on fracture surfaces of these materials. These problems are discussed here.

Keywords

Decay Time Scanning Electron Microscope Micrograph Fracture Mode Electron Emission Pure Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    P. Braunlich and J. T. Dickinson; “Proceedings of 6th International Symposium on Exoelectron Emission and Application” Rostock, East Germany (1979) 9Google Scholar
  2. 2).
    H. Glaefeke; Exoemission in “Thermally Stimulated Relaxation in Solids” ed. P. Braunlich, Springer Verlag, Berlin, (1983)Google Scholar
  3. 3).
    J. T. Dickinson, M. K. Park, E. E. Donaldson and L. C. Jensen; J. Vac. Sci. Technol. 20:436 (1982)CrossRefGoogle Scholar
  4. 4).
    J. T. Dickinson, L.C. Jensen and A. Jahan-Latibari; J. Vac. Technol. A 2:1112 (1984)CrossRefGoogle Scholar
  5. 5).
    A. V. Poletaev and S. Z. Shmurak; Sov. Phys. Solid State; 26:2147 (1984)Google Scholar
  6. 6).
    J. T. Dickinson, A. Jahan-Latibari and L. C. Jensen; J. Mater. Sci. 20:229 (1985)CrossRefGoogle Scholar
  7. 7).
    S. C. Langford, J. T. Dickinson and L.C. Jensen; J. Appl. Phys. 62: 1437 (1987)CrossRefGoogle Scholar
  8. 8).
    J. P. Mathison, S. C. Langford and J. T. Dickinson; J. Appl. Phys. 65:1923 (1989)CrossRefGoogle Scholar
  9. 9).
    S. Owaki, K. Katagiri, T. Okada, S. Nakahara and K. Sugihara; Adv. Cryog. Eng. Mater. 34:283 (1988)Google Scholar
  10. 10).
    S. Nakahara, T. Fujita, K. Sugihara, S. Owaki, K. Katagiri and T. Okada; Adv. Cryog. Eng. Mater. 34:91 (1988)Google Scholar
  11. 11).
    S. Owaki, K. Katagiri, T. Okada, S. Nakahara and K. Sugihara; Adv. Cryog. Eng. Mater. 36:1361 (1990)Google Scholar
  12. 12).
    S. Nakahara, T. Fujita, K. Sugihara, S. Owaki, K. Katagiri and T. Okada; Adv. Cryog. Eng. Mater. 36:1201 (1990)Google Scholar
  13. 13).
    S. Nakahara, T. Fujita, K. Sugihara, S. Owaki, K. Katagiri and T. Okada; Jpn. J. Appl. Phys. 24–4:198 (1985)Google Scholar
  14. 14).
    S. Owaki, K. Katagiri, T. Okada, S. Nakahara and K. Sugihara; “Proceeding of 9th International Symposium on Exoelectron Emission and Application” Wroclaw, Poland (1988) 262Google Scholar
  15. 15).
    S. Nakahara, T. Fujita, K. Sugihara, S. Owaki, K. Katagiri and T. Okada; “Proceeding of 9th International Symposium on Exoelectron Emission and Application” Wroclaw, Poland (1988) 254Google Scholar
  16. 16).
    S. C. Langford, D. L. Doering and J. T. Dickinson; Phys. Rev. Lett. 59:2795 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Shigehiro Owaki
    • 1
  • Toichi Okada
    • 1
  • Sumio Nakahara
    • 2
  • Kiyoshi Sugihara
    • 2
  1. 1.ISIR, Osaka UniversityOsakaJapan
  2. 2.Dept. Mechanical EngineeringKansai UniversityOsakaJapan

Personalised recommendations