Skip to main content

Fracture Behavior of Non-Oxide Ceramics under Biaxial Stresses

  • Chapter

Part of the book series: Fracture Mechanics of Ceramics ((FMOC,volume 10))

Abstract

In order to apply non-oxide ceramics to structural uses, such as gas turbine components and diesel engine components, greater understanding of their fracture behavior is needed. The fracture behavior under multiaxial stresses is important to component design because complicate stresses are established in real parts. Torsional, combined tensile/torsional and combined compressive/torsional tests were performed for the strength tests under tension/compression biaxial stresses. Ball-on-ring and ring-on-ring tests were performed for the strength tests under tension/tension biaxial stresses. Tested materials were two kinds of sintered silicon nitride and one kind of HIPed silicon carbide. The fracture strength was predicted using the multiaxial distribution function based on various proposed fracture criteria from the data of uniaxial strength. Moreover, the authors propose modified G-Criterion which is expressed as the equivalent stress \(Z = {\left( {{\sigma _n}^2 + {{\left( {\beta {\tau _n}} \right)}^2}} \right)^{1/2}}\). β indicates the degree of the influence of shear stress on a fracture. β value of each ceramic was determined by the strength data tested under tension/compression biaxial stresses. The predicted fracture strength was compared with experimental results under both tension/compression and tension/tension biaxial stresses. The fracture behavior of non-oxide ceramics under biaxial stresses was discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Erdogan, G.C. Sih, J. Basic Eng., 85, 519–27(1963).

    Article  Google Scholar 

  2. M.A. Hussain, S.L. Pu and J. Underwood, ASTM STP 560, 2–28(1974).

    Google Scholar 

  3. R.J. Nuismer, Int.J.Fract., 11, 245–50(1975).

    Article  Google Scholar 

  4. G.C. Sih, Int.J.Fract., 10, 305–21(1974).

    Article  Google Scholar 

  5. M. Ichikawa, and S. Tanaka, Int.J.Fract., 18, 19–28(1982).

    Article  Google Scholar 

  6. K. Watanabe and H. Shiomi, Transactions of The Japanese Society of Mechanical Engineers-A, 49, 19–28(1983).

    Article  Google Scholar 

  7. J.J. Petrovic, J.Am.Ceram.Soc., 68, 348–55(1985).

    Article  CAS  Google Scholar 

  8. H. Awaji and S. Sato, Tras.ASME, J.Eng.Master. & Technol., 100, 175–82(1978).

    Article  Google Scholar 

  9. G. Tappin, R.W. Davidge and J.R. Mclaren, “Fracture Mechanics of Ceramics,Vol.3”, Plenum Press, New York, 435–49(1978).

    Google Scholar 

  10. M.G. Stout and J.J. Petrovic, J.Am.Ceram.Soc., 67, 14–23(1984).

    Article  Google Scholar 

  11. D.K. Shetty, Trans.ASME, J.Eng.Gas Turbines & Powder, Vol.109, 282–89(1985).

    Article  Google Scholar 

  12. I. Oda, M. Matsui, T. Soma, M. Masuda and N. Yamada, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, 96 [5] 539–45(1988).

    Article  CAS  Google Scholar 

  13. H. Tsuruta, N. Yamada, Y. Nakasuji, M. Masuda and M. Matsui, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, 99 [7] 574–81(1991).

    Article  CAS  Google Scholar 

  14. D.L. Hargosoch, Trans.ASME, 85-GT-100, 1–12(1985).

    Google Scholar 

  15. J.P. Gyekenyesi, Trans.ASME, J.Eng.Gas Turbines & Powder, 86-Or-34, 1–7(1985).

    Google Scholar 

  16. J. Lamon and A.G. Evans, J.Am.Ceram.Soc., 66, 177–82(1983).

    Article  Google Scholar 

  17. J. Hamanaka, Y. Hashimoto, M. Itoh and N. Watanabe, Transactions of The Japanese Society of Mechanical Engineers-A, 52, 2187–93(1986).

    Article  Google Scholar 

  18. T. Soma, M. Matsui and I. Oda, Proceedings of the International Conference of Non-Oxide Technical and Engineering Ceramics, Ireland, 361–74(1985).

    Google Scholar 

  19. W. Weibull, Ingeniors vetenskaps akademien Handlingar, Nr.151(1939).

    Google Scholar 

  20. D.G.S. Davis, Proc.Brit.Ceram.Soc.,22,429–52(1973).

    Google Scholar 

  21. Y. Matsuo, Transactions of The Japanese Society of Mechanical Engineers-A, 46, 605–12(1980).

    Article  Google Scholar 

  22. S.B. Batdorf and H.L. Heinisch,Jr., J.Am.Ceram.Soc., 61, 355–58(1978).

    Article  Google Scholar 

  23. T.K. Hellen and W.S. Blackburn, Int.J.Fract., 11, 605–17(1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nakasuji, Y., Yamada, N., Tsuruta, H., Masuda, M., Matsui, M. (1992). Fracture Behavior of Non-Oxide Ceramics under Biaxial Stresses. In: Bradt, R.C., Hasselman, D.P.H., Munz, D., Sakai, M., Shevchenko, V.Y. (eds) Fracture Mechanics of Ceramics. Fracture Mechanics of Ceramics, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3348-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3348-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6476-4

  • Online ISBN: 978-1-4615-3348-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics