Electric Field Effects on Bound to Quasibound Intersubband Absorption and Photocurrent in GaAs/AlGaAs Quantum Wells

  • E. Martinet
  • F. Luc
  • E. Rosencher
  • Ph. Bois
  • E. Costard
  • S. Delaître
  • E. Böckenhoff
Part of the NATO ASI Series book series (NSSB, volume 288)


Bound to quasi-bound intersubband transitions in multiquantum wells are of particular interest for high responsivity infrared photodetectors. However, contrary to the bound-to-bound case, no systematic comparison between photoconduction (PCS) and absorption (AS) spectra has been performed in that system. We have used Fourier Transform Infrared Spectroscopy to determine simultaneously the influence of an applied electric field on AS and PCS spectra. Two kinds of well are under study: a symmetric square and an asymmetric step quantum well, both with a quasi-bound excited state. Absorption and photocurrent spectra are found to be different in shape. Moreover, the electric field dependence of the spectra is different: photocurrent threshold is red shifted, whereas the absorption peak follows Stark shift effect. This suggests a sequential mechanism involved in the photocurrent collection, governing the response lineshape of the detector.


Quantum Well Applied Electric Field Ionization Threshold Stark Shift Electric Field Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. C. West and S. J. Eglash, First observation of an extremely large dipole infrared transition within the conduction band of a GaAs quantum well, Appl. Phys. Lett. 46:1156 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    J. S. Smith, L. C. Chiu, S. Margalit, and A. Yariv, A new infrared detector using electron emission from multiquantum wells, J. Vac. Sci. Technol. B1:376 (1983).Google Scholar
  3. 3.
    B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker, and R. J. Malik, New 10 μm infrared detector using intersubband absorption in resonant tunneling superlattices, Appl. Phys. Lett. 50:1092 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    B. F. Levine, C. G. Bethea, K. K. Choi, J. Walker, and R. J. Malik, Bound-to-extended state absorption GaAs superlattice transport infrared detectors, Appl. Phys. Lett. 64:1591 (1988).Google Scholar
  5. 5.
    D. D. Coon and R. P. G. Karunasiri, New mode of HZ detection using quantum wells, Appl. Phys. Lett. 45:649 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    H. C. Liu, A. G. Steele, M. Buchanan, and Z. R. Wasilewski, Effects of the Upper State Position and the Number of Wells in the Performance of Intersubband Quantum Well Detectors, in: “Intersubband Transitions in Quantum Wells,” E. Rosencher, B. Vinter, and B. Levine, ed., Plenum, London (1992).Google Scholar
  7. 7.
    E. Martinet, F. Luc, E. Rosencher, P. Bois, and S. Delaître, Electrical tunability of infrared detectors using compositionally asymetrical GaAs/AlGaAs quantum wells, Appl. Phvs. Lett. (To be published).Google Scholar
  8. 8.
    B. F. Levine, C. G. Bethea, G. Hasnain, J. Walker, and R. J. Malik, Highdetectivity D* = 1.0 x 1010 cmHz1/2/W GaAs/AlGaAs multiquantum well λ= 8.3 μm infrared detector, Appl. Phys. Lett. 53:296 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    A. Harwit and J. S. Harris, Observation of Stark shifts in quantum well intersubband transitions, Appl. Phys. Lett. 50:685 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    B. F. Levine, C. G. Bethea, K. K. Choi, J. Walker, and R. J. Malik, Tunneling lifetime broadening of the quantum well intersubband photoconductivity spectrum, Appl. Phys. Lett. 53:231 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    Y. J. Mii, R. P. G. Kasunasiri, K. L. Wang, M. Chen, and P. F. Yuh, Large Stark shifts of the local to global state intersubband transitions in step quantum wells, Appl. Phys. Lett 56:1986 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    E. Martinet, E. Rosencher, F. Chevoir, J. Nagle, and P. Bois, Determination of electron tunneling time from a GaAs/AlGaAs quantum well by capacitance transient spectroscopy, Phys. Rev.B 44:3157 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    E. Rosencher, E. Martinet, F. Luc, P. Bois, and E. Böckenhoff, Dicrepancies between photocurrent and absorption spectroscopies in intersubband photoionization from GaAs/AlGaAs multiquantum wells, Apol. Phys. Lett. 59: (1991).Google Scholar
  14. 14.
    Z. Ikonic, V. Milanovic, and D. Tjapkin, Bound-to-free intraband absorption in GaAsA1GaAs semiconductor quantum wells, Appl. Phvs. Lett. 54:247 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    A. Harstein and Z. A. Weinberg, Unified theory of internal photoemission and photon-assisted tunneling, Phys. Rev. B 20:1335 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    E. Rosencher, V. Mosser, and G. Vincent, Transient current study of field-assisted emission from shallow levels in silicon, Phys. Rev. B 29:1135 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    A. G. Petrov and A. Y. Shik, Photoionization of quantum wells in a strong electric field., Sov. Phys. Semicond. 24:896 (1990).Google Scholar
  18. 18.
    R. P. Karunasiri, Y. J. Mii, and K. L. Wang, Tunable infrared modulator and switch using Stark shift in step quantum wells, IEEE Electron Device Lett. 11:227 (1990).ADSCrossRefGoogle Scholar
  19. 19.
    E. Rosencher and P. Bois, Model system for optical nonlinearities: Asymmetric quantum wells, Phys. Rev.B 44: (1991).Google Scholar
  20. 20.
    E. Rosencher, P. Bois, J. Nagle, E. Costard, and S. Delaître, Observation of nonlinear optical rectification at 10.6 μm in compositionally asymmetrical AlGaAs multiquantum wells, Appl. Phys. Lett. 55:1597 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    E. Rosencher and P. Bois, Model system for optical nonlinearities: Asymmetric quantum wells, in: E. Rosencher, B. Vinter, and B. Levine. “Intersubband Transitions in Quantum Wells”, ed., Plenum, London (1992).CrossRefGoogle Scholar
  22. 22.
    J. A. Brum and G. Bastard, Resonant carrier capture by semiconductor quantum well, Phys. Rev. B 33:1420 (1986).ADSCrossRefGoogle Scholar
  23. 23.
    B. Deveaud, A. Chomette, F. Clérot, and A. Regreny, Subpicosecond Luminescence Study of Capture and Intersubband Relaxation in Quantum Wells, in: “Intersubband Transitions in Quantum Wells,” E. Rosencher, B. Vinter, and B. Levine, ed., Plenum, London (1992).Google Scholar
  24. 24.
    B. F. Levine, C. G. Bethea, G. Hasnain, J. Walker, R. J. Malik, and J. M. Vandenberg, Coherent enhancement of hot-electron mean free path by superlattice transmission resonances, Phys. Rev. Lett. 63:899 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • E. Martinet
    • 1
  • F. Luc
    • 1
  • E. Rosencher
    • 1
  • Ph. Bois
    • 1
  • E. Costard
    • 1
  • S. Delaître
    • 1
  • E. Böckenhoff
    • 1
  1. 1.THOMSON — CSFLaboratoire Central de RecherchesOrsayFrance

Personalised recommendations