Skip to main content

Far-Infrared Emission and Absorption Spectroscopy of Quantum Wells and Superlattices

  • Chapter
Intersubband Transitions in Quantum Wells

Part of the book series: NATO ASI Series ((NSSB,volume 288))

Abstract

The optical properties of semiconductor quantum well and superlattice structures in the (far) infrared spectral region are determined by transitions between electronic subbands. Since the first observation of intersubband absorption in a quantum well was reported1 in 1985, there has been steadily growing interest in the detailed physical properties of intersubband transitions as well as in possible applications in various areas of electro-optics and optoelectronics, many of which are reviewed in this volume. The most obvious application, as an infrared photon detector,2 has been discussed extensively in the literature. Other applications, for example in nonlinear optical devices,3 begin to emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. C. West and S. J. Eglash, First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well, Appl. Phys. Lett. 46:1156 (1985).

    Article  ADS  Google Scholar 

  2. B. F. Levine, C. G. Bethea, G. Hasnain, V. O. Shen, E. Pelve, R. R. Abbot, and S. J. Hsieh, High sensitivity low dark current 10 μm GaAs quantum well infrared photodetectors, Appl. Phys. Lett. 56:851 (1990), and this volume.

    Article  ADS  Google Scholar 

  3. E. Rosencher et al., A model system for optical nonlinearities: asymmetric quantum wells, this volume.

    Google Scholar 

  4. M. Helm, P. England, E. Colas, F. DeRosa, and S. J. Allen, Jr., Intersubband emission from semiconductor superlattices excited by sequential resonant tunneling, Phys. Rev. Lett. 63:74 (1989).

    Article  ADS  Google Scholar 

  5. R. F. Kazarinov and R. A. Suns, Possibility of the amplification of electromagnetic waves in a semiconductor superlattice, Fiz. Tekh. Poluprovodn. 5:797 (1971) [Soy. Phys. Semicond. 5:707 (1971)]; Electric and electromagnetic properties of semiconductors with a superlattice, 6:148 (1972) [6:120 (1972)].

    Google Scholar 

  6. F. Capasso, K. Mohammed, and A. Y. Cho, Resonant tunneling through double barriers, perpendicular transport phenomena in superlattices, and their device applications, IEEE T. Ouantum Electron. QE-22:1853 (1986).

    Article  ADS  Google Scholar 

  7. P. F. Yuh and K. L. Wang, Novel infrared band-aligned superlattice laser, Appl. Phys. Lett. 51:1404 (1987).

    Article  ADS  Google Scholar 

  8. H. C. Liu, A novel superlattice infrared source J. Appl. Phys. 63:2856 (1988).

    Article  ADS  Google Scholar 

  9. S. Borenstain and J. Katz, Intersubband Auger recombination and population inversion in quantum-well subbands, Phys. Rev. B 39:10852 (1989).

    Article  ADS  Google Scholar 

  10. S. I. Borenstain and J. Katz, Evaluation of the feasibility of a far-infrared laser based on intersubband transitions in GaAs quantum wells, Appl. Phys. Lett. 55:654 (1989).

    Article  ADS  Google Scholar 

  11. M. Sweeny and J. Xu, On photon-assisted tunneling in quantum well structures, IEEE T. Quantum Electron. QE-25:885 (1989).

    Article  ADS  Google Scholar 

  12. M. Helm and S. J. Allen, Jr., Can barriers with inverted tunneling rates lead to subband population inversion? Appl. Phys. Lett. 56:1368 (1990).

    Article  ADS  Google Scholar 

  13. R. Q. Yang and J. M. Xu, Population inversion through resonant interband tunneling Appl. Phys. Lett. 59:181 (1991).

    Article  ADS  Google Scholar 

  14. J.-W. Choe, A. G. U. Perera, M. H. Francombe, and D. D. Coon, Estimates of infrared intersubband emission and its angular dependence in GaAs/AlGaAs multiquantum well structuresAppl. Phys. Lett. 59:54 (1991).

    Article  ADS  Google Scholar 

  15. A. A. Andronov, Proposed optical-phonon mediated population inversion and stimulated farinfrared emission in superlattices, at the “7th Int. Conference on Hot Carriers in Semiconductors”, Nara, Japan (1991), to be published in Semicond. Sci. Technol.

    Google Scholar 

  16. E. Gornik, R. Schawarz, D. C. Tsui, A. C. Gossard, and W. Wiegmann, Far infrared emission from 2D electrons at the GaAs/AlGaAs interface, Solid State Commun. 38:541 (1981)

    Article  ADS  Google Scholar 

  17. M. Helm, E. Colas, P. England, F. DeRosa, and S. J. Allen, Jr., Observation of grating-induced intersubband emission from GaAs/AlGaAs superlattices, Appl. Phys. Lett. 53:1714 (1988).

    Article  ADS  Google Scholar 

  18. J. W. Bales, K. A. McIntosh, T. C. L. G. Sollner, W. D. Goodhue, and E. R. Brown, Observation of optically pumped intersubband emission from quantum wells, SPIE Vol. 1283:74 (1990).

    Article  ADS  Google Scholar 

  19. M. Helm, F. M. Peeters, F. DeRosa, E. Colas, J. P. Harbison, and L. T. Florez, Far-infrared spectroscopy of minibands and confined donors in GaAs/AlGaAs superlattices, Phys. Rev. B 43:13983 (1991).

    Article  ADS  Google Scholar 

  20. L. Esaki and R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM T. Res. Dev. 14:61 (1970).

    Article  Google Scholar 

  21. L. Esaki and L. L. Chang, New transport phenomenon in a semiconductor superlattice, Phys. Rev. Lett. 33:495 (1974).

    Article  ADS  Google Scholar 

  22. K. K. Choi, B. F. Levine, R. J. Malik, J. Walker, and C. G. Bethea, Periodic negative conductance by sequential resonant tunneling through an expanding high-field superlattice domain, Phys. Rev. B 35:4172 (1987).

    Article  ADS  Google Scholar 

  23. H. T. Grahn, H. Schneider, and K. von Klitzing, Optical studies of electric field domains in GaAs/AlGaAs superlattices, Phys. Rev. B 41:2890 (1990).

    Article  ADS  Google Scholar 

  24. M. Helm, J. E. Golub, and E. Colas, Electroluminescence and high-field domains in GaAs/AlGaAs superlattices, Appl. Phys. Lett. 56:1356 (1990).

    Article  ADS  Google Scholar 

  25. A. Seilmeier, H.-J. Hübner, G. Abstreiter, G. Weimann, and W. Schlapp, Intersubband relaxation in GaAs/AlGaAs quantum well structures observed directly by an infrared bleaching technique, Phys. Rev. Lett. 59:1345 (1987).

    Article  ADS  Google Scholar 

  26. M. C. Tatham, J. F. Ryan, and C. T. Foxon, Time-resolved Raman measurements of intersubband relaxation in GaAs quantum wells, Phys. Rev. Lett. 63:1637 (1989).

    Article  ADS  Google Scholar 

  27. D. Y. Oberli, D. R. Wake, M. V. Klein, J. Klem, T. Henderson, and H. Morkoc, Time-resolved Raman scattering in GaAs quantum wells, Phys. Rev. Lett. 59:696 (1987).

    Article  ADS  Google Scholar 

  28. J. A. Levenson, G. Dolique, J. L. Oudar, and I. Abram, Intersubband carrier relaxation in highly excited GaAs/AlGaAs multiple quantum wells, Phys. Rev. B 41:3688 (1990).

    Article  ADS  Google Scholar 

  29. T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54:437 (1982).

    Article  ADS  Google Scholar 

  30. D. Heitmann and U. Mackens, Grating-coupler induced intersubband resonances in electron inversion layers of silicon, Phys. Rev. B 33:8269 (1986).

    Article  ADS  Google Scholar 

  31. L. Zheng, W. L. Schaich, and A. H. MacDonald, Theory of two-dimensional grating couplers, Phys. Rev. B 41:8493 (1990).

    Article  ADS  Google Scholar 

  32. R. Ferreira and G. Bastard, Evaluation of some scattering times for electrons in unbiased and biased single-and multiple-quantum-well structures, Phys. Rev. B 40:1074 (1989).

    Article  ADS  Google Scholar 

  33. P. F. Yuh and K. L. Wang, Optical transitions in a step quantum well, J. Appl. Phys. 65:4377 (1989).

    Article  ADS  Google Scholar 

  34. Y. J. Mii, K. L. Wang, R. P. G. Karunasiri, and P. F. Yuh, Observation of large oscillator strength for both 1–2 and 1–3 intersubband transitions of step quantum wells, Appl. Phys. Lett. 56:1046 (1990).

    Article  ADS  Google Scholar 

  35. S. J. Allen, Jr., B. Vinter, and D. C. Tsui, On the absorption of infrared radiation by electrons in semiconductor inversion layers, Solid State Commun. 20:425 (1976).

    Article  ADS  Google Scholar 

  36. R. Dingle, A. C. Gossard, and W. Wiegmann, Direct observation of superlattice formation in a semiconductor heterostructure, Phys. Rev. Lett. 34:1327 (1975).

    Article  ADS  Google Scholar 

  37. P. England, J. R. Hayes, E. Colas, and M. Helm, Hot electron spectroscopy of Bloch electrons in high order minibands of a semiconductor superlattice, Phys. Rev. Lett. 63:1708 (1989).

    Article  ADS  Google Scholar 

  38. B. Deveaud, J. Shah, T. C. Damen, B. Lambert, and A. Regreny, Bloch transport of electrons and holes in superlattice minibands: direct measurement by sub-picosecond luminescence spectroscopy, Phys. Rev. Lett. 58:2582 (1988).

    Article  ADS  Google Scholar 

  39. H. Schneider, K. von Klitzing, and K. Ploog, Resonant tunneling and miniband conduction in GaAs/AlAs superlattices studied by electrical time-of flight techniques, Europhys. Lett. 8:575 (1989).

    Article  ADS  Google Scholar 

  40. T. Duffield, R. Bhat, M. Koza, F. DeRosa, K. M. Rush, and S. J. Allen, Jr., Barrier bound resonances in semiconductor superlattices in strong magnetic fields, Phys. Rev. Lett. 59:2693 (1987).

    Article  ADS  Google Scholar 

  41. K. J. Moore, G. Duggan, A. Raukema, and K. Woodbridge, Miniband dispersion in (In,Ga)As/GaAs strained-layer superlattices, Phys. Rev. B 42:1326 (1990), and references therein.

    Article  ADS  Google Scholar 

  42. A. Sibille, J. F. Palmier, H. Wang, and F. Mollot, Observation of Esaki-Tsu negative differential velocity in GaAs/AlAs superlattices, Phys. Rev. Lett. 64:52 (1990).

    Article  ADS  Google Scholar 

  43. F. Beltram, F. Capasso, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, Scattering-controlled transmission resonances and negative differential conductance by field-induced localization in superlattices, Phys. Rev. Lett. 64:3167 (1990).

    Article  ADS  Google Scholar 

  44. G. Brozak, M. Helm, F. DeRosa, C. H. Perry, M. Koza, R. Bhat, and S. J. Allen, Jr., Thermal saturation of band transport in a superlattice, Phys. Rev. Lett. 64:3163 (1990).

    Article  ADS  Google Scholar 

  45. J.-M. Mercy, Y.-H. Chang, A. A. Reeder, G. Brozak, and B. D. McCombe, Far-infrared studies of doped AlGaAs/GaAs multiple-quantum-well structures, Superlattices Microstruct. 4:213 (1988).

    Article  ADS  Google Scholar 

  46. S. D. Gunapala, B. F. Levine, and N. Chand, Bound to continuum superlattice miniband long wavelength GaAs/AlGaAs photoconductors, J. Appl. Phys. 70:305 (1991).

    Article  ADS  Google Scholar 

  47. H. A. Fertig and S. Das Sarma, Reentrant localization and a mobility gap in superlattice minibands, Phys. Rev. B 42:1448 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Helm, M. (1992). Far-Infrared Emission and Absorption Spectroscopy of Quantum Wells and Superlattices. In: Rosencher, E., Vinter, B., Levine, B. (eds) Intersubband Transitions in Quantum Wells. NATO ASI Series, vol 288. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3346-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3346-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6475-7

  • Online ISBN: 978-1-4615-3346-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics