Advertisement

X-Ray Cone Beam Tomography with Two Tilted Circular Trajectories

  • Philippe Rizo
  • Pierre Grangeat
  • Pascal Sire
  • Patrick Le Masson
  • Solange Delagenière
Part of the Advances in Cryogenic Engineering book series (volume 28)

Abstract

Recently 3-D cone-beam tomography has become of interest for the nondestructive evaluation of advanced materials. The main field of application in nondestructive testing is the evaluation of structural ceramics. Study of such materials implies high density resolution and high sensitivity to cracks. In fact, with a single circular source trajectory, when the cone-beam aperture increases, density is underestimated and cone shaped artifacts may appear at interfaces in the sample even at relatively small aperture [1–3]. These artifacts limit the thickness we can examine with a planar source trajectory. To maintain optimal reconstruction accuracy with a circular source trajectory, the angular aperture must remain within ±10°. However Kudo and Saito [4] showed that this limit can be slightly overcome by using a special interpolation of the shadow area. But to examine greater thicknesses and to maintain resolution, we must widen the cone-beam aperture thereby decreasing accuracy. To overcome these aperture limitations, Tuy [5] introduced the double circular source trajectory idea.

Keywords

Modulation Transfer Function Density Threshold Shadow Area Circular Trajectory Acquisition Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Rizo, P. Grangeat, in Proc. of the Industrial Computerized Tomography Conf. (Am. Soc. for Nondest Test., Seattle, 1989), 24–28Google Scholar
  2. 2.
    P. Rizo, P. Grangeat, P. Sire, P. Lemasson, P. Melennec, “Comparison of two 3D X-ray cone-beam reconstruction algorithms with circular source trajectory” J. of Opt. Soc. Oct 1991Google Scholar
  3. 3.
    P. Rizo, W. A. Ellingson, in Proc of the Nondestructive Evaluation of Ceramics Conf., (Am. Soc. for Nondest. Test., Columbus, OH, 1990), 121–125Google Scholar
  4. 4.
    H. Kudo, T. Saito, in Proc. Topical Meeting, O.S.A., Signal Recovery and Synthesis III. Cape Cod, MA, 1989, 174–177Google Scholar
  5. 5.
    H. K. Tuy, Siam J. Appl. Math. 43 (3), 546–552 (1983)MathSciNetGoogle Scholar
  6. 6.
    L. A. Feldkamp, L. C. Davis, J. W. Kress, J. Opt. Soc. Am. 1 (6),612–619 (1984)CrossRefGoogle Scholar
  7. 7.
    B. D. Smith, Ph. D. thesis, University of Rhode Island (1987)Google Scholar
  8. 8.
    B. D. Smith, IEEE Trans. Med. Imaging, MI-3, 91–98, (1984)Google Scholar
  9. 9.
    H. Kudo, T. Saito, J. Opt. Soc. Am. A. 7 (12), 2169–2183 (1990)CrossRefGoogle Scholar
  10. 10.
    P. Rizo, P. Grangeat, P. Sire, P. Lemasson, S. Delagenière, Proc. of the Materials Research Society of America fall meeting, Boston, MA, November 25 - December 1, (1990)Google Scholar
  11. 11.
    P. Grangeat, thèse de doctorat Ecole Nationale Supérieure des Télécommunications (1987)Google Scholar
  12. 12.
    P. Grangeat, Lecture notes in mathematics, Proc. of Conf. Mathematical Methods in Computed Tomography, G. T. Herman, A. K. Louis, F. Natterer, eds., Springer-Verlag, Berlin (1990)Google Scholar
  13. 13.
    A. A Kirillov, Soviet Math. Dokl. 2, 268–269 (1961)MathSciNetGoogle Scholar
  14. 14.
    P. Grangeat, P. Lemasson, P. Melennec, P. Sire, Proc. of Medical Imaging V, technical conference 1445: Image processing,San Jose, CA, Febuary 23-March lsrt, (1991)Google Scholar
  15. 15.
    P. Sire, P. Rizo, M. Martin, P. Grangeat, P. Morisseau, in these proceedingsGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Philippe Rizo
    • 1
  • Pierre Grangeat
    • 1
  • Pascal Sire
    • 1
  • Patrick Le Masson
    • 1
  • Solange Delagenière
    • 1
  1. 1.Laboratoire d’Electronique de Technologie et d’Instrumentation Département SystèmesCentre d’Etudes Nucléaires de GrenobleGrenoble CedexFrance

Personalised recommendations