Advertisement

The Shell Model Distribution of Nuclear Shapes

  • J. Carvalho
  • D. J. Rowe
Part of the NATO ASI Series book series (NSSB, volume 289)

Abstract

The recent observation of superdeformed states has revived interest in the coexistence of different deformation shapes in the low energy spectra of nuclei. The question arises as to what deformation shapes are available to a given nucleus and where in the energy spectrum they should make their appearance.

Keywords

Shell Model Quadrupole Moment Intrinsic State Model Wave Function Nilsson Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ui, Quantum mechanical rigid rotator with an arbitrary deformation, Prog. Theor. Phys. 44:153 (1970).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    L. Weaver, L. C. Biedenharn and R. Y. Cusson, Rotational bands in nuclei as induced group representations, Ann. Phys. (N.Y.) 77:250 (1973).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    J. P. Elliott, Collective motion in the nuclear shell model, Proc. Roy. Soc. A245:128, 562 (1958).ADSGoogle Scholar
  4. 4.
    J. Carvalho, R. Le Blanc, M. Vassanji, D. J. Rowe and J. B. McGrory, The symplectic shell-model theory of collective states, Nucl. Phys. A452:240 (1986).ADSGoogle Scholar
  5. 5.
    R. Le Blanc, J. Carvalho, M. Vassanji and D. J. Rowe, An effective shell-model theory of collective states, Nucl. Phys. A452:263 (1986).ADSGoogle Scholar
  6. 6.
    G. Rosensteel and D. J. Rowe, Nuclear Sp(3,ℝ) model, Phys. Rev. Lett. 38:10 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    D. J. Rowe, Microscopic theory of the nuclear collective model, Rep. Prog. Phys. 48:1419 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    D. J. Rowe, R. Le Blanc and J. Repka, A rotor expansion of the su(3) Lie algebra, J. Phys. A: Math. Gen. 22:L309 (1989).ADSMATHCrossRefGoogle Scholar
  9. 9.
    D. J. Rowe, M. G. Vassanji and J. Carvalho, The coupled-rotor-vibrator model, Nucl. Phys. A504:76 (1989).ADSGoogle Scholar
  10. 10.
    M. Jarrio, J. L. Wood, The su(3) structure of rotational states in heavy deformed nuclei, Nucl. Phys. (in press).Google Scholar
  11. 11.
    J. P. Draayer, Y. Leschber, S. C. Park and R. Lopez, Representations of U(3) in U(N), Comput. Phys. Commun. 56:279 (1989).ADSMATHCrossRefGoogle Scholar
  12. 12.
    S. G. Nllsson et al.,On the structure and stability of heavy and superheavy elements, Nucl. Phys. A131:1 (1969).ADSGoogle Scholar
  13. 13.
    Castaños. J, Draayer and Y. Leschber, Towards a shell-model description of the low-energy structure of deformed nuclei, Ann. Phys. (N.Y.) 180:290 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • J. Carvalho
    • 1
  • D. J. Rowe
    • 2
  1. 1.Department of Mathematics, Physics, and Computer ScienceRyerson Polytechnical InstituteTorontoCanada
  2. 2.Department of PhysicsUniversity of TorontoTorontoCanada

Personalised recommendations