Advertisement

Mean Field Analysis of the CuO2 Lattice: Comparison to Monte Carlo Simulations

  • A. J. Fedro
  • Yu Zhou
  • T. C. Leung
  • B. N. Harmon

Abstract

The 2D multi-band Hubbard models have been attracting much attention recently since they provide one of the simplest models for the high Tc superconductors where one assumes the relevant motion is confined to the Cu-O planes. Recent Monte Carlo (MC) studies1,2, using the three-band Hubbard model to describe this motion, have been done in a wide parameter range for various values of doping δ away from half-filling (δ = 0 is defined as one hole per Cu site). We summarize their results as follows: We define the on-site O energy, εp, and the Cu on-site energy, εd. Then there are two basic regimes depending on whether the on-site energy difference e between the O and Cu sites (ε = εp - εd) is greater or less than the onsite Cu Coulomb repulsion Udd. If Udd ≫ ε the behavior of the system is controlled by ε (charge transfer limit). In this case, at half-filling, they find strong antiferrromagnetic correlations and evidence of a charge transfer gap (≈ ε). The antiferromagnetic correlations decrease rapidly as one dopes away from half-filling. In the other case ε ≫ Udd the behavior is controlled by Udd. Here the O occupation is always small and we essentially have an effective single band model with a Mott-Hubbard gap which depends on Udd.

Keywords

Monte Carlo Monte Carlo Result Charge Transfer Energy Stagger Magnetization Mean Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. T. Scalettar, D. J. Scalapino, R. L. Sugar and S. R. White, Preprint.Google Scholar
  2. 2.
    G. Dopf, A. Muramatsu and W. Hanke, Phys. Rev. B 41, 9264 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    A. J. Fedro and S. K. Sinha, Valence Instabilities, ed. P. Wachter and H. Boppart (North-Holland, Amsterdam, 1982), p 371;Google Scholar
  4. A. J. Fedro and B. D. Dunlap, Jpn. J. Appl. Phys., 26 Supplement 26–3, 463, (1987).Google Scholar
  5. 4.
    Andrei E. Ruckenstein and Stefan Schmitt-Rink, Phys. Rev. B 38, 7188 (1988).ADSCrossRefGoogle Scholar
  6. 5.
    E.G. Goryachev, E.V. Kuzmin and S. G. Ovchinnikov, J. Phys. C. 15, 1481 (1982);ADSCrossRefGoogle Scholar
  7. V. Yu. Yushankhai, N.M. Plakida and P. Kalinay, Physica C 174, 401 (1991).ADSCrossRefGoogle Scholar
  8. 6.
    Yu Zhou, A. J. Fedro, T. C. Leung and B. N. Harmon, in preparation.Google Scholar
  9. 7.
    C. M. Vanna, S. Schmitt-Rink and E. Abrahams, Solid State Commun. 62, 681 (1987).ADSCrossRefGoogle Scholar
  10. 8.
    V. Emery, Phys. Rev. Leu. 58, 2794 (1987).ADSCrossRefGoogle Scholar
  11. 9.
    M. S. Hybertsen, M. Schluter and N. E. Christensen, Phys. Rev. B 39, 9028 (1989);ADSCrossRefGoogle Scholar
  12. A. K. McMahan, R. M. Martin and S. Satpathy, Phys. Rev. B 38, 6650 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. J. Fedro
    • 1
    • 2
  • Yu Zhou
    • 1
  • T. C. Leung
    • 3
  • B. N. Harmon
    • 3
  1. 1.Materials Science DivisionArgonne National LaboratoryUSA
  2. 2.Department of PhysicsNorthern Illinois UniversityUSA
  3. 3.Ames LaboratoryUSDOE and Iowa State UniversityUSA

Personalised recommendations