Skip to main content

Normal—State Transport Properties of YBa2Cu3O7-δ : Conventional Metallic Picture

  • Chapter
High-Temperature Superconductivity
  • 396 Accesses

Abstract

The normal—state and superconducting properties of the high—Tc cuprate superconductors offer a great challenge for theoretical explanation. Because many of the normal—state properties (electrical resistivity, optical conductivity, Hall coefficient) are unlike those observed in typical metals, some theories have stressed the non—Fermi—liquid[1] or marginal Fermi—liquid[2] nature of these materials. Others[3] have emphasized a conventional Fermi—liquid picture, taking into account a small value of the Fermi energy and anisotropic crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. W. Anderson, Science 235, 1196 (1987);

    Article  ADS  Google Scholar 

  2. R. B. Laughlin, Phys. Rev. Lett. 60 2677 (1988).

    Article  ADS  Google Scholar 

  3. C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).

    Article  ADS  Google Scholar 

  4. V. Z. Kresin and S. A. Wolf, S. S. Commun. 63, 1141 (1987);

    Article  Google Scholar 

  5. V. Z. Kresin and S. A. Wolf, S. S. Commun. Phys. Rev B41, 4278 (1990).

    ADS  Google Scholar 

  6. For a recent review of thermopower in the cuprates see, A. B. Kaiser and C. Uher, in Studies of High Temperature Superconductors Vol. 7, edited by A. V. Narlikar (Nova Science Publishers, New York, 1990).

    Google Scholar 

  7. P. J. Ouseph and M. Ray O’Bryan, Phys. Rev. B41, 4123 (1990).

    ADS  Google Scholar 

  8. J. Yu, S. Massida, A. J. Freeman, and D. D. Koelling, Phys. Letts. Al22, 203 (1987);

    Article  ADS  Google Scholar 

  9. H. Krakauer, W. E. Pickett, and R. E. Cohen, J. Supercond. 1, 111 (1988).

    Article  ADS  Google Scholar 

  10. J. C. Campuzano, G. Jennings, M. Faiz, L. Beaulaigue, B. W. Veal, J. Z. Liu, A. P. Paulikas, K. Vandervoort, H. Claus, R. S. List, A. J. Arko, and R. J. Bartlett, Phys Rev. Lett. 64, 2308 (1989).

    Article  ADS  Google Scholar 

  11. K. Salama, V. Selvamanickam, L. Gao, and K. Sun, Appl. Phys. Lett 54, 2352 (1989).

    Article  ADS  Google Scholar 

  12. T. L. Francavilla, V. Selvamanickam, K. Salama, and D. H. Liebenberg, Cryogenics 30, 606 (1990).

    Article  Google Scholar 

  13. T. A. Vanderah, M. S. Osofsky, C. K. Lowe—Ma, E. A. Skelton, D. E. Bliss, and M. W. Decker, to be published, J. Crystal Growth.

    Google Scholar 

  14. M. Daeumling, J. M. Seuntjens, and D. C. Larbalestier, Nature 346, 332 (1990).

    Article  ADS  Google Scholar 

  15. M. S. Osofsky, J. L. Cohn, S. Qadri, E. A. Skelton, R. J. Soulen Jr., and S. A. Wolf, unpublished.

    Google Scholar 

  16. F. J. Blatt, The Thermoelectric Power of Metals (Plenum, New York, 1976).

    Book  Google Scholar 

  17. T. A. Friedmann, J. P. Rice, J. Giapintzakis, and D. M. Ginsberg, Phys. Rev B39, 4258 (1990).

    Google Scholar 

  18. M. Hikita and M. Suzuki, Phys. Rev. B 39, 4756 (1989).

    Article  ADS  Google Scholar 

  19. W. Reichardt, D. Ewert, E. Gering, F. Gompf, L. Pintschovius, B. Renker, G. Collin, A. J. Dianoux, and H. Mutka, Physica 156 & 157B, 897 (1989).

    Google Scholar 

  20. J. L. Cohn, S. A. Wolf, V. Selvamanickam, and K. Salama, Phys. Rev. Lett. 66, no. 8 (1991).

    Article  Google Scholar 

  21. M. Bailyn, Phys. Rev. 157, 480 (1967).

    Article  ADS  Google Scholar 

  22. V. Z. Kresin and S. A. Wolf, Physica 169C, 476 (1990).

    ADS  Google Scholar 

  23. Y. C. Jean, J. Kyle, H. Nakanishi, P. E. A. Turchi, R. H. Howell, A. L. Wachs, M. J. Fluss, R. C. Meng, H. P. Hor, J. Z. Huang, and C. W. Chu, Phys. Rev. Lett. 60, 1069 (1988);

    Article  ADS  Google Scholar 

  24. V. Z. Kresin and H. Morawitz, J. Superconductivity 3, 227 (1990).

    Article  ADS  Google Scholar 

  25. T. A. Friedmann, M. W. Rabin, J. Giapintzakis, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B42, 6217 (1990);

    ADS  Google Scholar 

  26. U. Welp, S. Fleshier, W. K. Kwok, J. Downey, Y. Fang, G. W. Crabtree, and J. Z. Liu, Phys. Rev. B42, 10189 (1990).

    ADS  Google Scholar 

  27. R. J. Cava, A. W. Hewat, E. A. Hewat, B. Batlogg, M. Marezio, K. M. Rabe, J. J. Krajewski, W. F. Peck Jr., and L. W. Rupp, Physica 165C, 419 (1990).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohn, J.L., Wolf, S.A., Selvamanickam, V., Salama, K. (1991). Normal—State Transport Properties of YBa2Cu3O7-δ : Conventional Metallic Picture. In: Ashkenazi, J., Barnes, S.E., Zuo, F., Vezzoli, G.C., Klein, B.M. (eds) High-Temperature Superconductivity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3338-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3338-2_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6471-9

  • Online ISBN: 978-1-4615-3338-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics