Infrared Study of the Order Parameter in YBa2Cu3O7: Analogy to Short Range Ordering in Itinerant Ferromagnets

  • D. van der Marel
  • A. Wittlin
  • H.-U. Habermeier
  • D. Heitmann


We report on detailed measurements of the temperature dependence of the infrared reflectivity spectra of YBa2Cu3O7. It is shown that the prominent edge1 at 8k B T c shows practically no energy shift as a function of temperature, whereas the oscillator strength of this feature depends strongly on temperature with a marked critical behavior at the superconducting transition temperature. This behavior coincides with the temperature dependence of the superfluid fraction, which was determined from the spectra using two different methods. A precursor at the same energy position persists at temperatures above T c . If the edge can be interpreted as the characteristic energy required to break up a pair, we arrive at the conclusion that the gap itself can not be considered as an order parameter in this case. The superfluid density on the other hand changes approximately as 1 — (T/T c ) 4. We point out that a remarkable analogy exists to the situation in itinerant magnetism, where short range order persists above the Curie temperature resulting in an exchange splitting that does not vanish2 at T c .


Dielectric Function Short Range Order Exchange Splitting Superfluid Density Superfluid Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Feuid, U. Welp, Y. Fang and J. Z. Liu, Phys. Rev. Lett. 65: 801 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    D. E. Eastman, F. J. Himpsel and J. A. Knapp, Phys. Rev. Lett. 40: 1514 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    H.-U. Habermeier and G. Mertens, Physica C 162–164: 601 (1989).Google Scholar
  4. 4.
    D. van der Marel, M. Bauer, E. H. Brandt, H.-U. Habermeier, D. Heitmann, W. König, and A. Wittlin, Phys. Rev. B, in print.Google Scholar
  5. D. van der Marel, H.-U. Habermeier, D. Heitmann, W. König, and A. Wittlin, Physica C, in print.Google Scholar
  6. 5.
    R. T. Collins, Z. Schlesinger, F. Holtzberg, and C. Feild, Phys. Rev. Lett. 63: 422 (1989).ADSCrossRefGoogle Scholar
  7. G. A. Thomas, J. Orenstein, D. H. Rapkine, M. Capizzi, A.J. Mills, R. N. Bhatt, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 61: 1313 (1988).ADSCrossRefGoogle Scholar
  8. A. Wittlin, L. Genzel, M. Cardona, M. Bauer, W. König, E. Garcia, M. Barahona, and M. V. Cabanas, Phys. Rev. B 37: 652 (1988).ADSCrossRefGoogle Scholar
  9. A. D. Wieck, E. Batke, U. Merkt, D. Walker, and A. Gold, Solid State Commun. 69: 553 (1989).ADSCrossRefGoogle Scholar
  10. J. Schützmann, W. Ose, J. Keller, K. F. Renk, B. Roas, L. Schultz, and G. Saemann-Ischenko, Europhys. Lett. 8: 679 (1989).ADSCrossRefGoogle Scholar
  11. Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Feild, and A. Gupta, Phys. Rev. B 41: 11237 (1990).ADSCrossRefGoogle Scholar
  12. T. Timusk, S. L. Herr, K. Kamaras, C. D. Porter, D. B. Tanner, D. A. Bonn, J. D. Garrett, C. V. Stager, J. E. Greedan, and M. Reedyk, Phys. Rev. B 38: 6683 (1988).ADSCrossRefGoogle Scholar
  13. K. Kamaras, S. L. Herr, C. D. Porter, N. Tache, D. B. Tanner, S. Etemad, T. Venketasan, E. Chase, A. Inam, X. D. Wu, M. S. Hegde, and B. Dutta, Phys. Rev. Lett. 64: 84 (1990).ADSCrossRefGoogle Scholar
  14. 6.
    R. E. Glover and M. Tinkham, Phys. Rev. 104: 844 (1956).ADSCrossRefGoogle Scholar
  15. M. Tinkham and R. E. Ferell, Phys. Rev. Lett. 2: 331 (1959).ADSCrossRefGoogle Scholar
  16. 7.
    M. Tinkham, “Superconductivity”, McGraw-Hill, New York, 1965.Google Scholar
  17. 8.
    N.E. Bickers, D.J. Scalapino, R.T. Collins, and Z. Schlesinger, Phys. Rev. B 42: 67(1990).Google Scholar
  18. 9.
    W. Lee, D. Rainer, and W. Zimmermann, Physica C 159: 535 (1989).ADSCrossRefGoogle Scholar
  19. P. B. Allen, and D. Rainer, Nature 349: 396 (1991).ADSCrossRefGoogle Scholar
  20. 10.
    R. T. Collins, Z. Schlesinger, F. Holtzberg, and C. Field, Phys. Rev. B, in print; Z. Schlesinger, these proceedings.Google Scholar
  21. 11.
    P.B. Littlewood and C. M. Varma, ”Phenomenology of the normal and superconducting states of a marginal Fermi liquid.”, presented at ”Theory of high Tcsyperconductivity”, Dubna, U.S.S.R., july 1990. These authors propose that in high T, materials the reflectivity feature corresponds to 4Δ, using clean limit/strong coupling arguments with an electronic excitation spectrum providing the ‘glue’ instead of phonons. However, the complete absence of any structure at 2Δ only results from treating the problem in the extreme limit, which is not the case according to our results.Google Scholar
  22. 12.
    An overview of the physics of long range order, both in superconductivity and in magnetism is given in ”Long range order in solids” by R. M. White and T. H. Geballe, Edited by H. Ehrenreich, F. Seitz and D. Turnbull, Supplement 15, Academic Press, New York (1979).Google Scholar
  23. 13.
    H. J. van der Zant, H. A. Rijken, and J. E. Mooij, Journal of Low Temperature Physics 79: 289 (1990).ADSCrossRefGoogle Scholar
  24. 14.
    D. Emin, and M.S. Hillery, Phys. Rev. B 39: 6575 (1989).ADSCrossRefGoogle Scholar
  25. 15.
    L. J. de Jongh, Physica C 152: 171 (1988).ADSCrossRefGoogle Scholar
  26. 16.
    R. Micnas, J Ranninger, and S. Robaszkiewicz, Rev. of Modern Phys. 62: 113 (1990).ADSCrossRefGoogle Scholar
  27. 17.
    V. Cataudella, and P. Minnhagen, Physica C 166: 442 (1990).ADSCrossRefGoogle Scholar
  28. 18.
    Y. Bar-Yam, Phys. Rev. B 43: 359 (1991).ADSCrossRefGoogle Scholar
  29. Y. Bar-Yam, ibid. 2601 (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • D. van der Marel
    • 1
    • 2
  • A. Wittlin
    • 1
    • 3
    • 4
  • H.-U. Habermeier
    • 1
  • D. Heitmann
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Federal Republik of Germany
  2. 2.Faculty of Applied PhysicsDelft University of TechnologyDelftThe Netherlands
  3. 3.research project RPBP 01.9Institute of Physics PAN PLWarszawaPoland
  4. 4.Katholieke Universiteit NijmegenNijmegenThe Netherlands

Personalised recommendations