Skip to main content

The Support of Hydrostatic Load in Cephalopod Shells

Adaptive and Ontogenetic Explanations of Shell Form and Evolution from Hooke 1695 to the Present

  • Chapter
Book cover Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 26))

Abstract

The chambered cephalopod shell has long been a subject of scientific investigation. However, a rudimentary understanding of the function of the shell in supporting external pressure was not achieved until the early 1960s. This functional issue is a relatively simple one: Did the chambered shell contain pressurized gas opposing the external water pressure, or alternatively did the shell structure itself support the load of the overlying column of water? Tests of the hypothesis of internal pressurized gas are also relatively simple to devise. Puncture of the shell while it is immersed in a fluid would appear to be sufficient to demonstrate whether there is a high internal gas pressure. If there were such pressure, a dramatic effusion of gas would occur when the shell was punctured and it should be readily observed. Indeed such a test was suggested in 1832 by the great anatomist Richard Owen (1832). The tests performed in the 1960s (Denton and Gilpin-Brown, 1961a-c, 1966; Denton et al., 1961, 1967) were similar in many respects to that suggested by Owen, and they demonstrated unequivocally that the shell does not contain elevated gas pressure. Thus the structure of the cephalopod shell does support the forces resulting from the overlying column of water (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arkell, W. J., 1949, Jurassic ammonites in 1949, Sci. Prog. 147:401–417.

    Google Scholar 

  • Arkell, W. J., 1956, The Jurassic Geology of the World,Oliver & Boyd, London.

    Google Scholar 

  • Arkell, W. J., 1957a, Sutures and septa in Jurassic ammonite systematics, Geol. Mag. 94:235–248.

    Article  Google Scholar 

  • Arkell, W. J., 1957b, Introduction to Mesozoic ammonoidea, in: Treatise on Invertebrate Paleontology, Part L (R. C. Moore, ed.), pp. 89–129, University of Kansas Press, Lawrence, Kansas.

    Google Scholar 

  • Arkell, W. J., and Moy-Thomas, J. A., 1940, Palaeontology and the taxonomic problem, in: The New Systematics (J. Huxley, ed.), pp. 395–410, Oxford University Press, Oxford.

    Google Scholar 

  • Bandel, K., and von Boletzky, S., 1979, A comparative study of the structure, development, and morphologic relationships of chambered cephalopod shells, Veliger 21:313–354.

    Google Scholar 

  • Bather, F. A., 1893, The recapitulation theory in palaeontology, Nat. Sci. 3:275–281.

    Google Scholar 

  • Bather, F. A., 1897, The growth of the cephalopod shell, Geol. Mag. 4:446–449.

    Article  Google Scholar 

  • Beecher, C. E., 1889, On the development of some Silurian Brachiopoda, Mem. N. Y. State Mus. 1:1–95.

    Google Scholar 

  • Beecher, C. E., 1890, On the development of the genus Tornoceras Hyatt, Am. J. Sci. 40:71–75.

    Google Scholar 

  • Beecher, C. E., 1891a, Development of the Brachiopoda. I. Introduction, Am. J. Sci. 41:71–75.

    Google Scholar 

  • Beecher, C. E.. 1891b, The development of Paleozoic porferous corals, Trans. Conn. Acad. Sci. 8:207–214.

    Google Scholar 

  • Beecher, C. E., 1892, Development of the Brachiopoda. II. Classification of the stages of growth and decline, Am. J. Sei. 44:133–152.

    Google Scholar 

  • Beecher, C. E., 1893, Larval forms of trilobites in the Lower Helderberg Group, Am. J. Sci. 46:142–147.

    Google Scholar 

  • Beecher, C. E.. 1895, The larval stages of trilobites, Am. Geol. 16:166–197.

    Google Scholar 

  • Beecher, C. E., 1897, Development of the Brachiopoda. III. Morphology of the brachia, U. S. Geol. Surv. Bull. 87:105–112.

    Google Scholar 

  • Beecher, C. E., 1901, Studies in Evolution, Scribner, New York.

    Google Scholar 

  • Bert, P., 1867, Mémoire sur la physiologie de la Seiche, Mem. Soc. Sci. Phys. Nat. Bordeaux 5:114–138.

    Google Scholar 

  • Bidder, A. M., 1962, Use of the tentacles, swimming and buoyancy control in the Pearly Nautilus, Nature 196:451–454.

    Article  Google Scholar 

  • Bowler, P. J., 1976, Fossils and Progress: Paleontology and the Idea of Progressive Evolution in the Nineteenth Century, Science History Publications, New York.

    Google Scholar 

  • Bruun, A. F., 1943, The biology of Spirula spirula (L.), Dana Rep. 4:1–46.

    Google Scholar 

  • Bruun, A. F., 1950, New light on the biology of Spirula, a mesopalagic cephalopod, in: Essays on the natural sciences in honour of Captain Allan Hancock, pp. 61–72, University of Southern California Press, Los Angeles, California.

    Google Scholar 

  • Buckland, W., 1836, Geology and Mineralogy Considered with Reference to Natural Theology, Vol. I, William Pickering, London.

    Google Scholar 

  • Buckman, S. S., 1909–1912, Type Ammonites, Vol. I, Buckman, London.

    Google Scholar 

  • Buckman, S. S., 1919–1921, Type Ammonites, Vol. III, Buckman, London.

    Google Scholar 

  • Buckman, S. S., 1922–1923, Type Ammonites, Vol. IV, Buckman, London.

    Google Scholar 

  • Chamberlain, J. A. Jr., and Chamberlain, R. B., 1985, Septal fracture in Nautilus: Implications for cephalopod paleobathymetry, Lethaia 18:261–270.

    Article  Google Scholar 

  • Chamberlain, J. A., Jr., and Chamberlain, R. B., 1986, Is cephalopod septal strength index an index of cephalopod septal strength?, Alcheringa 10:85–97.

    Article  Google Scholar 

  • Chamberlain, J. A., Jr., and Moore, W. A., Jr., 1982, Rupture strength and flow rate of Nautilus siphuncular tube, Paleobiology 8:408–425.

    Google Scholar 

  • Checa, A., 1986, Interrelated structural variations in Physoderoceratinae (Aspidoceratidae, Ammonitina), Neues Jahrb. Geol. Paläontol. Mitt. 1986:16–26.

    Google Scholar 

  • Collins, D. H., and Minton, P., 1967, Siphuncular tube of Nautilus, Nature 216:916–917.

    Article  PubMed  CAS  Google Scholar 

  • Cummings, E. R., 1903, The morphogenesis of Platystrophia. A study of the evolution of a Paleozoic brachiopod, Am. J. Sei. 15:1–48, 121–146.

    Google Scholar 

  • Cummings, E. R., 1904, Development of some Paleozoic Bryozoa, Am. J. Sci. 17: 49–78.

    Article  Google Scholar 

  • Cummings, E. R., 1905, Development of Fenestella, Am. J. Sci. 20:169–177.

    Article  Google Scholar 

  • Cummings, E. R., 1909, Paleontology and the recapitulation theory, Proc. Indiana Acad. Sci. 25th Annu. Mtg. 1909:305–340.

    Google Scholar 

  • Currey, J. D., 1976, Further studies on the mechanical properties of mollusc shell material, J. Zool. Lond. 180:445–453.

    Article  Google Scholar 

  • Currey, J. D., and Taylor, J. D., 1974, The mechanical behavior of some molluscan hard tissues, J. Zool. Lond. 173:395–406.

    Article  Google Scholar 

  • Davis, R. A.. 1987, Nautilus—The first twenty-two centuries, in: Nautilus: The Biology and Paleobiology of a Living Fossil (W. B. Saunders and N. H. Landman, eds.), pp. 3–24, Plenum Press, New York.

    Google Scholar 

  • De Beer, G., 1958, Embryos and Ancestors, Clarendon Press, Oxford.

    Google Scholar 

  • Denton, E. J., 1974, On the buoyancy and the lives of modern and fossil cephalopods, Proc. R. Soc. Lond. 185:273–299.

    Article  Google Scholar 

  • Denton, E. J., and Gilpin-Brown, J. B., 1961a, The buoyancy of the cuttlefish Sepia officinalis (L.), J. Mar. Biol. Assoc. U. K. 41:319–342.

    Article  Google Scholar 

  • Denton, E. J., and Gilpin-Brown, J. B., 1961b, The distribution of gas and liquid within the cuttlebone, J. Mar. Biol. Assoc. U. K. 41:365–381.

    Article  Google Scholar 

  • Denton, E. J., and Gilpin-Brown, J. B., 1961c, The effect of light on the buoyancy of the cuttlefish, J. Mar. Biol. Assoc. U. K. 41:343–350.

    Article  Google Scholar 

  • Denton, E. J., and Gilpin-Brown, J. B., 1966, On the buoyancy of pearly Nautilus, J. Mar. Biol. Assoc. U. K. 46:365–381.

    Google Scholar 

  • Denton, E. J., and Gilpin-Brown, J. B., 1973, Floatation mechanisms in modern and fossil cephalopods, Adv. Mar. Biol. 11:197–268.

    Article  Google Scholar 

  • Denton, E. J., Gilpin-Brown, J. B., and Howarth, J. V., 1961, The osmotic mechanism of the cuttlebone, J. Mar. Biol. Assoc. U. K. 41:351–364.

    Article  Google Scholar 

  • Denton, E. J., Gilpin-Brown, J. B., and Howarth, J. V., 1967, On the buoyancy of Spirula spirula, J. Mar. Biol. Assoc. U. K. 47:181–191.

    Article  Google Scholar 

  • Derham, W., 1726, Philisophical Experiments and Observations of the late Eminent Dr. Robert Hooke, Derham, London.

    Google Scholar 

  • Diamond, J. M., and Bossert, W. H., 1967, Standing gradient osmotic flow. A mechanism for coupling water and solute transport in epitheilia, J. Gen. Physiol. 50:2061–2083.

    Article  PubMed  CAS  Google Scholar 

  • Dommergues, J., Cariou, E., Contini, D., Hantzpergue, P., Marchand, D., Meister, C., and Thierry, J., 1989, Homéomorphies et canalisations évolutives: Le Rôle del’ontogenèse. Quelques examples pris chez les ammonites du Jurassique, Geobios 22:5–48.

    Article  Google Scholar 

  • Eimer, G. H. T., 1898, On Orthogenesis and the Impotence of Natural Selection in Species-formation, Open Court, Chicago, Illinois.

    Google Scholar 

  • Garstang, W., 1922, The theory of recapitulation: A critical restatement of the biogenetic law, Linn. Soc. J. Zool. 35:81–101.

    Article  Google Scholar 

  • Garstang, W., 1966, Larval Forms with Other Zoological Verses, Blackwell, Oxford.

    Google Scholar 

  • George, T. N., 1933, Palingenesis and palaeontology, Biol. Rev. 7:108–135.

    Google Scholar 

  • Goodrich, E. S., 1930, Edwin Ray Lankester-1947–1927, Philos. Trans. R. Soc. 218:x–xv.

    Google Scholar 

  • Gould, S. J., 1989, Wonderful Life, Norton, New York.

    Google Scholar 

  • Gould, S. J., and Lewontin, R. C., 1979, The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme, Proc. R. Soc. B 205:581–598.

    Article  CAS  Google Scholar 

  • Grabau, A. W., 1902, Studies of Gastropoda, Am. Nat. 36:917–945.

    Article  Google Scholar 

  • Grabau, A. W., 1903, Studies of Gastropoda II. Fulgar and Sycotypus, Nat. Am. 37:515–539.

    Article  Google Scholar 

  • Grabau, A. W., 1906, Notes on the development of the biserial arm in certain crinoids, Am. J. Sci. 21:289–300.

    Google Scholar 

  • Grabau, A. W.. 1907, Studies of Gastropoda III. On orthogenetic variation in Gastropoda, Am. Nat. 41:607–646.

    Article  Google Scholar 

  • Greenwald, K. P., Cook, C. B., and Ward, P., 1982, The structure of the chambered Nautilus siphuncle: The siphuncular epithelium, J. Morphol. 172:5–22.

    Article  Google Scholar 

  • Hewitt, R. A., 1988. Nautiloid shell taphonomy: Interpretations based on water pressure, Palaeogeogr. Palaeoclimatol. Palaeoecol. 63:15–25.

    Article  Google Scholar 

  • Hewitt, R. A., and Westermann, G. E. G., 1986, Function of complexly fluted septa in ammonoid shells I. Mechanical principles and functional models. Neves Jahrb. Geol. Paläontol. 172:47–69.

    Google Scholar 

  • Hewitt, R. A., and Westermann, G. E. G., 1987a, Function of complexly fluted septa in Ammonoid shells II. Septal evolution and conclusions, Neues Jahrb. Geol. Palontol. 174:135–169.

    Google Scholar 

  • Hewitt, R. A., and Westermann, G. E. G., 19876, Nautilus shell architecture, in: Nautilus: The Biology and Paleobiology of a Living Fossil (W. B. Saunders and N. H. Landman, eds.), pp. 435–461, Plenum Press, New York.

    Google Scholar 

  • Hewitt, R. A., and Westermann, G. E. G., 1988, Nautiloidseptal strength: Revisited and revised concepts, Alcheringa 12:123–128.

    Article  Google Scholar 

  • Hurst, C. H., 1893, The recapitulation theory, Nat. Sci. 2:195–200, 364–369.

    Google Scholar 

  • Hyatt, A., 1889, Genesis of the Arietidae, Smithsonian Contributions to Knowledge No. 673, Washington, D. C.

    Google Scholar 

  • Hyatt, A., 1894, The phylogeny of an acquired characteristic, Proc. Am. Philos. Soc. 32:350–647.

    Google Scholar 

  • Jackson, R. T., 1890, Phylogeny of the Pelecypoda, Aviculidae and their allies, Mem. Bost. Soc. Nat. Hist. 4:277–400.

    Google Scholar 

  • Jackson, R. T., 1899, Localized stages in the development of plants and animals, Mem. Bost. Soc. Nat. Hist. 5:89–154.

    Google Scholar 

  • Jacobs, D. K., 1990, Sutural pattern and shell stress in Baculites with implications for other cephalopod shell morphologies, Paleobiology 16:336–348.

    Google Scholar 

  • Kanie, Y., Fukuda, Y., Nakayama, H., Seli, K., and Hattori, M., 1980, Implosion of living Nautilus under increased pressure, Paleobiology 6:44–47.

    Google Scholar 

  • Kennedy, W. J., and Cobban, W. A., 1976, Aspects of ammonite biology, biogeography and biostratigraphy, Spec. Pap. Palaeontol. 17:1–94.

    Google Scholar 

  • Kling, G. W., Clark, M. A., Compton, H. R., Devine, J. D., Evans, W. C., Humphrey, A. M., Koenigsberg, E. J., Lockwood, J. P., Tuttle, M. L., and Wagner, G. W., 1987, The 1986 Lake Nyos gas disaster in Cameroon, West Africa, Science 236:169–175.

    Article  PubMed  CAS  Google Scholar 

  • Landman, N. H., and Waage, K. M., 1982, Terminology of structures in embryonic shells of Mesozoic ammonites, J. Paleontol. 56:1293–1295.

    Google Scholar 

  • Lang, W. D., 1919a, Old age and extinction in fossils, Proc. Geol. Assoc. 30:102–113.

    Article  Google Scholar 

  • Lang, W. D., 1919b, The evolution of ammonites, Proc. Geol. Assoc. 30:49–65.

    Article  Google Scholar 

  • Lankester, E. R., 1876, Contributions to the developmental history of the mollusca, Philos. Trans. R. Soc. 165:1–48.

    Article  Google Scholar 

  • Lankester, E. R., 1890, Degeneration a Chapter in Darwinism, in: E. R. Lankester, The Advancement of Science, pp. 1–61, British Society for the Advancement of Science.

    Google Scholar 

  • Mayr, E., 1963, Animal Species and Evolution, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Meister, C., 1988, Ontogenèse et évolution des Amaltheidae (Ammonoidea), Eclogae Geol. Hely. 81:763–841.

    Google Scholar 

  • Moreau, A., 1876, Recherches expérimentales sur la fonctions de la vessie natatoire, Ann. Sci. Nat. Ser. 6 4:1–85.

    Google Scholar 

  • Needham, J., 1933, On the dissociability of the fundamental processes in ontogenesis, Biol. Rev. 8:180–223.

    Article  Google Scholar 

  • Oppenheimer, J. M.. 1967, Essays in the History of Embryology and Biology. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Owen, R., 1832, Memoir on the Pearly Nautilus, Royal College of Surgeons, London.

    Google Scholar 

  • Owen, R., 1878, On the relative positions to their construction of the chambered shells of cephalopods, Proc. Zool. Soc. Lond. 1878:955–975.

    Google Scholar 

  • Pavlov, A. P., 1901, Le Crétace inferieur de la Russie et sa faune, Nouv. Mem. Soc. Imp. Nat. Mosc. 16:87.

    Google Scholar 

  • Pfaff, E., 1911. Über Form und Bau der Ammonitensepten und ihre Beziehungen zur Suturlinie, Jahrb. Nieder. Geol. Ver. Hann. 1911:207–223.

    Google Scholar 

  • Raup, D. M., 1966, Geometric analysis of shell coiling: General problems, J. Paleontol. 40:1178–1190.

    Google Scholar 

  • Raup, D. M., 1967, Geometric analysis of shell coiling: Coiling in ammonoids, J. Paleontol. 41:43–65.

    Google Scholar 

  • Raup, D. M., and Takahashi, T., 1966, Experiments on strength of cephalopod shells in: Geological Society of America Annual Meeting 1966, Abstract 173.

    Google Scholar 

  • Raymond, P. E., 1904, Developmental change in some common Devonian brachiopods, Am. J. Sci. 17:276–301.

    Article  Google Scholar 

  • Raymond, P. E., 1914, Notes on the ontogeny of Isotelus gigas Dekay, Bull. Mus. Comp. Zool. 58:247–263.

    Google Scholar 

  • Saunders, W. B., and Landman, N. H., (eds.), 1987, Nautilus: The Biology and Paleobiology ofa Living Fossil, Plenum Press, New York.

    Google Scholar 

  • Saunders, W. B., and Wehman, D. A., 1977, Shell strength of Nautilus as a depth limiting factor, Paleobiology 3:83–89.

    Google Scholar 

  • Sedgewick, A. C., 1909, The influence of Darwin on the study of animal embryology, in: Darwin and Modern Science (A. C. Seward, ed.), pp. 171–184, Cambridge University Press, Cambridge.

    Google Scholar 

  • Simpson, G. G., 1944, Tempo and Mode in Evolution, Columbia University Press, New York.

    Google Scholar 

  • Smith, J. P., 1897, The development of Glyphioceras and the phylogeny of the Glyphioceratidae, Proc. Calif Acad. Sci. 1:105–128.

    Google Scholar 

  • Smith, J. P., 1898, The development of Lytoceras and Phylloceras, Proc. Calif Acad. Sei. 1:129–152.

    Google Scholar 

  • Smith, J. P., 1900a, The development and phylogeny of Placenticeras, Proc. Calif. Acad. Sci. 3:181–232.

    Google Scholar 

  • Smith, J. P., 1900b, The biogenic law from the standpoint of paleontology, J. Geol. 8:413–425.

    Article  Google Scholar 

  • Spath, L. F., 1914, On the development of Tragophylloceras loscombi, Q. J. Geol. Soc. 70:336–362.

    Article  Google Scholar 

  • Spath, L. F., 1919, Notes on ammonites, Geol. Mag. 56:26–58, 65–74, 115–122, 170–177, 220–225.

    Article  Google Scholar 

  • Spath, L. F., 1933, Evolution of the cephalopoda, Biol. Rev. 8:418–462.

    Article  Google Scholar 

  • Spath, L. F., 1938, The Ammonites of the Liassic Family Liparoceratidae, British Museum (Natural History), London.

    Google Scholar 

  • Swinnerton, H. H., 1938, Development and evolution, Br. Assoc. Adv. Sci. Annu. Mtg. 1938:57–84.

    Google Scholar 

  • Swinnerton, H. H., 1947, Outlines of Palaeontology, Edward Arnold, London.

    Google Scholar 

  • Swinnerton, H. H., and Trueman, A. E., 1918, The morphology and development of the ammonite septum, Q. J. Geol. Soc. 73:26–58.

    Article  Google Scholar 

  • Trueman, A. E., 1919, The evolution of the Lipoceratidae, Q. J. Geol. Soc. 74:247–298.

    Article  Google Scholar 

  • Vermeij, G. J., 1987, Evolution and Escalation An Ecological History of Life, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Yen-ill, A. E., 1896, The molluscan archetype considered as a veliger-like form, with discussion of certain points in molluscan morphology, Am. J. Sci. 2:91–136.

    Article  Google Scholar 

  • Ward, P. D., 1979, Cameral liquid in Nautilus and ammonites, Paleobiology 5:40–49.

    Google Scholar 

  • Ward, P., 1980, Comparative shell shape distributions in Jurassic-Cretaceous ammonites and Jurassic-Tertiary nautilids, Paleobiology 6:32–43.

    Google Scholar 

  • Ward, P., 1982, The relationship of siphuncle size to emptying rates in chambered cephalopods: Implications for cephalopod paleobiology, Paleobiology 8:426–433.

    Google Scholar 

  • Ward, P. D., 1988, In Search of Nautilus, Simon & Schuster, New York.

    Google Scholar 

  • Ward, P. D., and von Boletzky, S., 1984, Shell implosion depth and implosion morphologies in three species of Sepia (cephalopoda) from the Mediterranean Sea, J. Mar. Biol. Assoc. U. K. 64:955–966.

    Article  Google Scholar 

  • Ward, P., Greenwald, L., and Fougerie, F., 1980, Shell implosion depth for living Nautilus macromphalus in New Caledonia, Lethaia 13:182.

    Article  Google Scholar 

  • Ward, P., Greenwald, L., and Magnier, Y., 1981, The chamber formation cycle in Nautilus macromphalus, Paleobiology 7:481–493.

    Google Scholar 

  • Westermann, G. E. G., 1956, Phylogenie der Stephanocerataceae und Perisphinctaceae des Dogger, Neues Jahrb. Geol. Paläontol. 103:233–279.

    Google Scholar 

  • Westermann, G. E. G., 1958, The significance of septa and sutures in Jurassic ammonite systematics, Geol. Mag. 95:441–455.

    Article  Google Scholar 

  • Westermann, G. E. G., 1971, Form, structure and function of shell and siphuncle in coiled mesozoic ammonoids, Life Sci. Contrib. R. Ont. Mus. 78:1–39.

    Google Scholar 

  • Westermann, G. E. G., 1973, Strength of concave septa and depth limits of fossil cephalopods, Lethaia 6:383–403.

    Article  Google Scholar 

  • Westermann, G. E. G., 1975, Model for origin, function and fabrication of fluted cephalopod septa, Paläontol. Z. 49:235–253.

    Google Scholar 

  • Westermann, G. E. G., 1977, Form and function of orthoconic cephalopod shells with concave septa, Paleobiology 3:300–321.

    Google Scholar 

  • Westermann, G. E. G., 1982, The connecting rings of Nautilus and Mesozoic ammonoids: Implications for ammonite bathymetry, Lethaia 15:323–334.

    Article  Google Scholar 

  • Westermann, G. E. G., 1985a, Exploding Nautilus camerae does not test septal strength index, Lethaia 18:348.

    Article  Google Scholar 

  • Westermann, G. E. G., 1985b, Post-mortem descent with septal implosion in Silurian nautiloids, Paläontol. Z. 59:79–97.

    Google Scholar 

  • Willey, A., 1895, In the home of the Nautilus, Nat. Sei. 6:405–414.

    Google Scholar 

  • Willey, A., 1897, Zoological observations in the South Pacific, Q. J. Microscop. Soc. 39:219–231.

    Google Scholar 

  • Willey, A., 1902, Contributions to the Natural History of the Pearly Nautilus: A. Willey’s zoological results, Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jacobs, D.K. (1992). The Support of Hydrostatic Load in Cephalopod Shells. In: Hecht, M.K., Wallace, B., Macintyre, R.J. (eds) Evolutionary Biology. Evolutionary Biology, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3336-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3336-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6470-2

  • Online ISBN: 978-1-4615-3336-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics