Recent Contributions of Electron Interferometry to Wave—Particle Duality

  • Franz Hasselbach

Abstract

Louis de Broglie’s wave-particle duality hypothesis, published in his famous paper(1) in 1924, was verified for electrons only 3 years later by Davisson and Germer(2) and Thomson.(3) No interferometer was available at that time to measure the very short electron wavelengths predicted by the de Broglie relation. The idea underlying their experiment to prove the hypothesis was that if electrons are in some sense represented by waves, they should undergo diffraction from crystalline lattices in a way almost identical to X rays. Crystalline lattices of appropriate periodicity were at hand and therefore a diffraction experiment provided the first evidence of wave-particle duality.

Keywords

Quartz Helium Coherence Eter Refraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.de Broglie, C. R. Acad. Sci. 177, 507–510 (1923); Philos. Mag. 47, 446 (1924); Ann. Phys. (Paris) 3, 22-128 (1925).Google Scholar
  2. 2.
    C. J. Davisson and L. H. Germer, Phys. Rev. 30, 705 (1927).ADSCrossRefGoogle Scholar
  3. 3.
    G. P. Thomson, Proc. R. Soc. London Ser. A 117, 600 (1928); Nature 120, 802 (1927).ADSCrossRefGoogle Scholar
  4. 4.
    L. Marton, Phys. Rev. 85, 1057–1058 (1952).ADSCrossRefGoogle Scholar
  5. 5.
    G. Möllenstedt and H. Düker, Naturwissenschaften 42, 41 (1954).CrossRefGoogle Scholar
  6. 6.
    G. Möllenstedt and H. Düker, Z. Phys. 145, 377–397 (1956).ADSCrossRefGoogle Scholar
  7. 7.
    H. Rauch, W. Treimer, and U. Bonse, Phys. Lett. A 47, 369–371 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    E Hasselbach, Z. Phys. B: Condensed Matter 71, 443–449 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    A. Simpson, Rev. Mod. Phys. 28, 254–260 (1956).ADSCrossRefGoogle Scholar
  10. 10.
    G. Möllenstedt and H. Lichte, in: Neutron Interferometry, Proceedings of an International Workshop (U. Bonse and H. Rauch, eds.), Clarendon Press, Oxford, pp. 364–388 (1979).Google Scholar
  11. 11.
    G. F. Missiroli, G. Pozzi, and U. Valdrè, J. Phys. E 14, 649–671 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    A. Tonomura, Rev. Mod. Phys. 59, 639–669 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    W. Brünger, Naturwissenshaften 55, 295–296 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    R. G. Chambers, Phys. Rev. Lett 5, 3–5 (1960).ADSCrossRefGoogle Scholar
  15. 15.
    W. Bayh, Z. Phys. 169, 492–510 (1962).ADSCrossRefGoogle Scholar
  16. 16.
    H. Schmid, Ph.D. thesis, Universität Tübingen (1985).Google Scholar
  17. 17.
    A. Tonomura, Physica B 151, 206–213 (1988).CrossRefGoogle Scholar
  18. 18.
    H. Wahl, Optik 30, 508–520, 577-589 (1970).Google Scholar
  19. 19.
    H. Boersch, Naturwissenschaften 28, 709 (1940).ADSCrossRefGoogle Scholar
  20. 20.
    H. Boersch, Phys. Z. 44, 202–211 (1943).MATHGoogle Scholar
  21. 21.
    H. Boersch, Phys. Z. 44, 32–38 (1943).Google Scholar
  22. 22.
    G. Möllenstedt and R. Speidel, Phys. Bl. 16, 192–198 (1960).Google Scholar
  23. 23.
    G. Möllenstedt and C. Jönsson, Z. Phys. 155, 472–474 (1959).ADSCrossRefGoogle Scholar
  24. 24.
    C. Jönsson, Z. Phys. 161, 454–474 (1961).ADSCrossRefGoogle Scholar
  25. 25.
    C. Jönsson, D. Brand, and S. Hirschi, Am. J. Phys. 42, 4–11 (1974).CrossRefGoogle Scholar
  26. 26.
    P. Holl, Optik 30, 116–137 (1969).Google Scholar
  27. 27.
    C. Jönsson, Ph. D. thesis, Universität Tübingen (1960).Google Scholar
  28. 28.
    M. Nicklaus, To be published in Am. J. Phys. Google Scholar
  29. 29.
    P. G. Merli, G. F. Missiroli, and G. Pozzi, Am. J. Phys. 44, 306–307 (1976).ADSCrossRefGoogle Scholar
  30. 30.
    G. Wohland, Diploma thesis, Universität Tübingen (1977).Google Scholar
  31. 31.
    G. Matteucci and G. Pozzi, Am J. Phys. 46, 619–623 (1978).ADSCrossRefGoogle Scholar
  32. 32.
    F. Hasselbach, 19. Tagung der Deutschen Gesellschaft für Elektronenmikroskopie in Tübingen, Abstract 7L1, p. 90 (1979).Google Scholar
  33. 33.
    G. Möllenstedt and G. Wohland, in: Electron Microscopy 1980 (P. Bredoro and G. Boom, eds.), Vol. 1, pp. 28–29.Google Scholar
  34. 34.
    G. Wohland, Ph.D. thesis, Universität Tübingen (1981).Google Scholar
  35. 35.
    I. Daberkow, H. Gauch, and E Hasselbach, Joint Meeting on Electron Microscopy, Antwerp 1983, Program and Abstract book p. 100.Google Scholar
  36. 36.
    H. Kaiser, S. A. Werner, and E. A. George, Phys. Rev. Lett. 50, 560–563 (1983).ADSCrossRefGoogle Scholar
  37. 37.
    A. G. Klein, G. I. Opat, and W. A. Hamilton, Phys. Rev. Lett. 50, 563–565 (1983).ADSCrossRefGoogle Scholar
  38. 38.
    G. Comsa, Phys. Rev. Lett. 51, 1105–1106 (1983).ADSCrossRefGoogle Scholar
  39. 39.
    E Hasselbach and A. Schäfer, in: Proc. 12th Int. Congress for Electron Microscopy, Seattle 1990 (L. D. Peachey and D. B. Williams, eds.), San Francisco Press. San Francisco, Vol. 2, pp. 110–111.Google Scholar
  40. 40.
    G. Sagnac, C. R. Acad. Sci. 157, 708–710, 1410-1413 (1913).Google Scholar
  41. 41.
    E. J. Post, Rev. Mod. Phys. 39, 475–493 (1967).ADSCrossRefGoogle Scholar
  42. 42.
    J. Anandan, Phys. Rev. D 15, 1448–1457 (1977).ADSCrossRefGoogle Scholar
  43. 43.
    J. Anandan, Phys. Rev. D 24, 338–346 (1981).ADSCrossRefGoogle Scholar
  44. 44.
    C. V. Heer, Bull. Am. Phys. Soc. 6, 58 (1961).Google Scholar
  45. 45.
    F. Hasselbach, German patent No. DBP 3504278C2.Google Scholar
  46. 46.
    J. F. Clauser, Physica B 151, 262–272 (1988).CrossRefGoogle Scholar
  47. 47.
    R. Y. Chiao, Phys. Rev. B 25, 1655–1662 (1982).ADSCrossRefGoogle Scholar
  48. 48.
    J. E. Zimmermann and J. E. Mercereau, Phys. Rev. Lett. 14, 887–888 (1965).MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    S. A. Werner, J. L. Staudemann, and R. Colella, Phys. Rev. Lett. 42, 1103–1106 (1979).ADSCrossRefGoogle Scholar
  50. 50.
    D. Dieks and G. Nienhuis, Am. J. Phys. 58, 650–655 (1990).ADSCrossRefGoogle Scholar
  51. 51.
    M. Nicklaus, Ph.D. thesis, Universität Tübingen (1989).Google Scholar
  52. 52.
    A. A. Michelson and H. G. Gale, Astrophys. J. 61(3), 137–145 (1925).ADSCrossRefGoogle Scholar
  53. 53.
    F. Hasselbach and M. Nicklaus, Physica B 151, 230–234 (1988).CrossRefGoogle Scholar
  54. 54.
    E Hasselbach and M. Nicklaus, submitted for publication to Phys. Rev. A. Google Scholar
  55. 55.
    E Hasselbach and M. Nicklaus, submitted for publication to Phys. Rev. A. Google Scholar
  56. 56.
    B. H. W. Hendriks and G. Nienhuis, Quantum Opt. 2, 13–21 (1990).ADSCrossRefGoogle Scholar
  57. 57.
    M. V. Berry, Proc. R. Soc. London Ser. A 392, 45–57 (1984).ADSMATHCrossRefGoogle Scholar
  58. 58.
    H. J. Bernstein and A. V. Phillips, Sci. Am. 245(1), 95–109 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Franz Hasselbach
    • 1
  1. 1.Institut für Angewandte PhysikUniversität TübingenTübingenGermany

Personalised recommendations