Neutron Interferometric Tests of Quantum Mechanics

  • Helmut Rauch

Abstract

Neutron interferometers based on wave-front and amplitude division have been developed in the past. Most experiments have been performed with the perfect crystal neutron interferometer which provides widely separated coherent beams enabling new experiments in the field of fundamental nuclear and solid-state physics. A nondispersive sample arrangement and the difference of stochastic and deterministic absorption have been investigated. The verification of the 4π-symmetry of spinors and of the quantum mechanical spin-superposition experiment on a macroscopic scale are typical examples of interferometry in spin space. These experiments were continued with two resonance coils in the beams, and the results showed that coherence persists, even if an energy exchange between the neutron and the resonator system occurs with certainty. A quantum beat effect was observed when slightly different resonance frequencies were applied to both beams. In this case, an extremely high energy sensitivity of 2.7 × 10−19 eV was achieved. This effect can be interpreted as a magnetic Josephson-effect analog. Phase echo systems, experiments with chopped beams and multiplate interferometry are discussed as examples for forthcoming experiments. All the results obtained to date are in agreement with the formalism of quantum mechanics but stimulate the discussion about the interpretation of this basic theory.

Keywords

Entropy Graphite Attenuation Uranium Coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Maier-Leibnitz and T. Springer, Z. Phys. 167 (1962).Google Scholar
  2. 2.
    R. Gaehler, J. Kalus, and W. Mampe, J. Phys. E 13, 546 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    H. Rauch, W. Treimer, and U. Bonse, Phys. Lett. A 47, 369 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    W. Bauspiess, U. Bonse, H. Rauch, and W. Treimer, Z. Phys. 271, 177 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    A. I. Ioffe, V. S. Zabiyankan, and G. M. Drabkin, Phys. Lett. 111, 373 (1985).CrossRefGoogle Scholar
  6. 6.
    U. Bonse and M. Hart, Appl. Phys. Lett. 6, 155 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    H. Rauch and D. Petrascheck, in: Neutron Diffraction (H. Dachs, eds.), Springer-Verlag, Berlin (1978), Chapter 9.Google Scholar
  8. 8.
    V. F. Sears, Can. J. Phys. 56, 1261 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    W. Bauspiess, U. Bonse, and W. Graeff, J. Appl. Crystallogr. 9, 68 (1976).CrossRefGoogle Scholar
  10. 10.
    D. Petrascheck, Acta Phys. Aust. 45, 217 (1976).Google Scholar
  11. 11.
    M. L. Goldberger and F. Seitz, Phys. Rev. 71, 294 (1947).ADSMATHCrossRefGoogle Scholar
  12. 12.
    V. F. Sears, Phys. Rep. 82, 1 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    U. Bonse and H. Rauch (eds.), Neutron Interferometry, Clarendon Press, Oxford (1979).Google Scholar
  14. 14.
    H. Rauch, E. Seidl, D. Tuppinger, D. Petrascheck, and R. Scherm, Z. Phys. B 69, 69 (1987).CrossRefGoogle Scholar
  15. 15.
    H. Rauch and J. Summhammer, Phys. Lett. A 104, 44 (1984).ADSCrossRefGoogle Scholar
  16. 16.
    J. Summhammer, H. Rauch, and D. Tuppinger, Phys. Rev. A 36, 4447 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    H. Rauch, J. Summhammer, and E. Jericha, Phys. Rev. A 42, 3726 (1990).ADSCrossRefGoogle Scholar
  18. 18.
    M. Namiki and S. Pascazio, Phys. Lett. 147, 430 (1990).CrossRefGoogle Scholar
  19. 19.
    H. Rauch, Proc. 3rd Int. Symp. Found. Quantum Mechanics (S. Kobayashi et al., eds.), Phys. Soc. Japan (1989), p. 3.Google Scholar
  20. 20.
    W. K. Wootters and W. H. Zurek, Phys. Rev. D 19, 473 (1979).ADSCrossRefGoogle Scholar
  21. 21.
    P. Busch, Found. Phys. 17, 905 (1987).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Y. Aharonov and L. Susskind, Phys. Rev. 158, 1237 (1967).ADSCrossRefGoogle Scholar
  23. 23.
    H. J. Bernstein, Phys. Rev. Lett. 18, 1102 (1967).ADSCrossRefGoogle Scholar
  24. 24.
    G. Eder and A. Zeilinger, Nuovo Cimento B 34, 76 (1976).ADSCrossRefGoogle Scholar
  25. 25.
    H. Rauch, A. Zeilinger, G. Badurek, A. Wilfing, W. Bauspiess, and U. Bonse, Phys. Lett. A 54, 425 (1975).ADSCrossRefGoogle Scholar
  26. 26.
    S. A. Werner, R. Colella, A. W. Overhauser, and C. E Eagenir, Phys. Rev. Lett. 35, 1053 (1975).ADSCrossRefGoogle Scholar
  27. 27.
    A. Zeilinger, Nature 294, 544 (1981).ADSCrossRefGoogle Scholar
  28. 28.
    H. J. Bernstein, Nature 315, 42 (1985).ADSCrossRefGoogle Scholar
  29. 29.
    H. Rauch, A. Wilfing, W. Bauspiess, and U. Bonse, Z. Phys. B 29, 281 (1978).ADSCrossRefGoogle Scholar
  30. 30.
    M. V. Berry, Proc. R. Soc. London Ser. A 392, 45 (1984).ADSMATHCrossRefGoogle Scholar
  31. 31.
    J. Summhammer, G. Badurek, H. Rauch, U. Kischko, and A. Zeilinger, Phys. Rev. A 27, 2523 (1983).ADSCrossRefGoogle Scholar
  32. 32.
    G. Badurek, H. Rauch, and J. Summhammer, Phys. Rev. Lett. 51, 1015 (1983).ADSCrossRefGoogle Scholar
  33. 33.
    A. Zeilinger, Ref. 13, p. 241.Google Scholar
  34. 34.
    E. P. Wigner, Am. J. Phys. 31, 6 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  35. 35.
    B. Alefeld, G. Badurek, and H. Rauch, Z. Phys. B 41, 231 (1981).ADSCrossRefGoogle Scholar
  36. 36.
    G. M. Drabkin and R. A. Zhitnikov, Sov. Phys. JETP 11, 729 (1960).Google Scholar
  37. 37.
    E Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).ADSCrossRefGoogle Scholar
  38. 38.
    H. Kendrick, J. S. King, S. A. Werner, and A. Arott, Nucl. Instrum. Methods 79, 82 (1970).ADSCrossRefGoogle Scholar
  39. 39.
    P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968).ADSCrossRefGoogle Scholar
  40. 40.
    R. Jackiw, J. Math. Phys. 9, 339 (1968).ADSMATHCrossRefGoogle Scholar
  41. 41.
    R. J. Glauber, Phys. Rev. 131, 2766 (1963).MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    M. O. Scully and H. Walther, Phys. Rev. A 39, 5229 (1989).MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    C. Dewdney, P. Gueret, A. Kyprianidis, and J. P. Vigier, Phys. Lett. A 102, 291 (1984).ADSCrossRefGoogle Scholar
  44. 44.
    J. P. Vigier, Pramana 25, 397 (1985).ADSCrossRefGoogle Scholar
  45. 45.
    G. Badurek, H. Rauch, and D. Tuppinger, Proc. Int. Conf. New Techniques and Ideas in Quantum Measurement Theory, New York Academy of Science (1986), p. 133.Google Scholar
  46. 46.
    G. Badurek, H. Rauch, and D. Tuppinger, Phys. Rev. A 34, 2600 (1986).ADSCrossRefGoogle Scholar
  47. 47.
    H. Rauch and J. P. Vigier, Phys. Lett. A 151, 269 (1990); 157, 377 (1991).ADSCrossRefGoogle Scholar
  48. 48.
    U. Bonse, W. Graeff, R. Teworte, and R. Rauch, Phys. Status Solidi A 43, 487 (1977).ADSCrossRefGoogle Scholar
  49. 49.
    U. Bonse, W. Graeff, and H. Rauch, Phys. Lett. A 69, 420 (1979).ADSCrossRefGoogle Scholar
  50. 50.
    G. M. Aladzhadzhyan, P. A. Bezirganyan, O. S. Semerdzhyan, and D. M. Vardanyan, Phys. Status Solidi A 43, 399 (1977).ADSCrossRefGoogle Scholar
  51. 51.
    J. B. M. Uffink and J. Hilgevoord, Phys. Lett. A 105, 176 (1984).ADSCrossRefGoogle Scholar
  52. 52.
    D. Petrascheck and H. Rauch, Acta Crystallogr. A 40, 445 (1984).CrossRefGoogle Scholar
  53. 53.
    H. Rauch, U. Kischko, D. Petrascheck, and U. Bonse, Z. Phys. 51, 11 (1983).CrossRefGoogle Scholar
  54. 54.
    H. Rauch, Proc. Symp. Found. Modern Physics, Joensuu 1990, World Sci. Publ. (1991), p. 347.Google Scholar
  55. 55.
    B. D. Josephson, Rev. Mod. Phys. 46, 251 (1974).ADSCrossRefGoogle Scholar
  56. 56.
    E Mezei (ed.), Neutron Spin Echo, Lecture Notes in Physics 128, Springer-Verlag, Berlin (1980), p. 180.Google Scholar
  57. 57.
    G. Badurek, H. Rauch, and A. Zeilinger, in Ref. 56, p. 136.Google Scholar
  58. 58.
    H. Rauch, in Ref. 7, p. 161.Google Scholar
  59. 59.
    H. Kaiser, S. A. Werner, and E. A. George, Phys. Rev. Lett. 50, 560 (1983).ADSCrossRefGoogle Scholar
  60. 60.
    R. Clothier, H. Kaiser, S. A. Werner, H. Rauch, and H. Wölwttsch, Phys. Rev. A 44, 5357 (1991).ADSCrossRefGoogle Scholar
  61. 61.
    M. Heinrich, H. Rauch, and H. Wölwitsch, Physica B 156/157, 588 (1989).ADSCrossRefGoogle Scholar
  62. 62.
    H. Rauch, H. Wölwitsch, R. Clothier, H. Kaiser, and S. A. Werner, Phys. Rev. A (July, 1992), in press.Google Scholar
  63. 63.
    P. A. Bezirganyan, F. O. Eiramdshyan, and K. G. Truni, Phys. Status Solidi A 20, 611 (1973).ADSCrossRefGoogle Scholar
  64. 64.
    M. Heinrich, D. Petrascheck, and H. Rauch, Z. Phys. B 72 357 (1988).ADSCrossRefGoogle Scholar
  65. 65.
    B. Yurke, Phys. Rev. Lett. 56, 1515 (1986).ADSCrossRefGoogle Scholar
  66. 66.
    C. Dewdney, Phys. Lett. A 109, 377 (1985).ADSCrossRefGoogle Scholar
  67. 67.
    C. Dewdney, P. R. Holland, and A. Kyprianidis, Phys. Lett. A 119, 259 (1986).ADSCrossRefGoogle Scholar
  68. 68.
    A. G. Klein and S. A. Werner, Rep. Prog. Phys. 46, 259 (1983).ADSCrossRefGoogle Scholar
  69. 69.
    D. Greenberger, Rev. Mod. Phys. 55, 875 (1983).ADSCrossRefGoogle Scholar
  70. 70.
    H. Rauch, Contemp. Phys. 27, 345 (1986).ADSCrossRefGoogle Scholar
  71. 71.
    S. A. Werner and A. G. Klein, Methods Exp. Phys. 23(A), 259 (1986).ADSCrossRefGoogle Scholar
  72. 72.
    V. F. Sears, Neutron Optics, Oxford University Press, London (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Helmut Rauch
    • 1
  1. 1.Atominstitut der Oesterreichischen UniversitätenWienAustria

Personalised recommendations