Advertisement

The Concept of Direct and Indirect Neurotoxicity and the Concept of Toxic Metal/Essential Element Interactions as a Common Biomechanism Underlying Metal Toxicity

  • Louis W. Chang

Abstract

The toxicities of many metals have been well defined. Many of these metals, such as mercury, lead, cadmium, manganese, aluminum, and alkyltin, have demonstrated a special target affinity towards the nervous system.

Keywords

Dorsal Root Ganglion Lesion Development Cadmium Toxicity Lead Toxicity Dentate Granule Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulla, M., Svensson, S., and Haeger-Aronsen, B., 1979, Antagonistic effects of zinc and aluminum on lead inhibition ofγ-aminolevulinic acid dehydrataseArch Environ. Health 34:464.Google Scholar
  2. Bache, C.A., Gutenamann, W.H., and Lick, D.J., 1971, Residues of total mercury and methyl mercuric salts in lake trout as a function of age, Science 172:951.PubMedCrossRefGoogle Scholar
  3. Barltrop, D., and Khoo, H.E., 1976, The influence of dietary minerals and fat on the absorption of lead, Sci. Total Environ. 6:265.PubMedCrossRefGoogle Scholar
  4. Barton, T.C., Conrad, M.E., Harrison, L., and Nuby, S., 1978, Effects of calcium on the absorption and retention of lead, J. Lab. Clin. Med. 91:366.PubMedGoogle Scholar
  5. Bouldin, T.W., Goines, N.D., Bagnell, C.R., and Krigman, M.R., 1981, Pathogenesis of trimethyltin neuronal toxicity, Am. J. Pathol. 104:237.PubMedGoogle Scholar
  6. Bremner, I., and Campbell, I.K., 1980, The influence of dietary copper intake on the toxicity of cadmium, Ann. N.Y. Acad. Sci. 355:319.PubMedCrossRefGoogle Scholar
  7. Broman, T., 1967, On vascular aspects of the blood-brain barrier, in: Pathology of the Nervous System, Vol. 1 (J. Minckler, ed.), Blakiston, New York, chap. pp 33.Google Scholar
  8. Broman, T., and Steinwall, O., 1967, Blood-brain barrier, in: Pathology of the Nervous System, Vol. 1 (J. Minckler, ed.), Blakiston, New York, chap. 2.Google Scholar
  9. Brown, A.W., Aldridge, W.N., Street, B.W., and Verschoyle, R.D., 1979, The behavioral and neuropathologie sequelae of intoxication by trimethyltin compounds in the rat, Am. J. Pathol. 97:59.PubMedGoogle Scholar
  10. Bunn, C.R., and Matrone, G., 1966, In vivo interactions of cadmium, copper, zinc and iron in the mouse and rat, J. Nutr., 90:395.PubMedGoogle Scholar
  11. Cavanagh, J.B., and Chen, F.C.K., 1971, Amino acid incorporation in protein during the “silent phase” before organo-mercury and p-bromophenylacetylurea neuropathology in the rat, Acta Neuropathol. 19:216.Google Scholar
  12. Cerklewski, F.L., and Forbes, R.M., 1976, Influence of dietery zinc on lead toxicity in the rat, J. Nutr. 106:689.PubMedGoogle Scholar
  13. Chang, L.W., 1979, Pathological effects of mercury poisoning, in: Biogeochemistry of Mercury (J.O. Nriagu, ed.), Elsevier, New York, pp. 519–580.Google Scholar
  14. Chang, L.W., 1980, Neurotoxic effects of mercury, in: Experimental and Clinical Neurotoxicology (P.S. Spencer, and H.H. Schaumberg, eds.), Williams and Wilkins, Baltimore, pp. 508–526.Google Scholar
  15. Chang, L.W., 1982, Pathogenetic mechanisms of the neurotoxicity of methylmercury, in: Mechanisms of Neurotoxic Substances (K.N. Prasad, and A. Vemadakis, eds.), Raven Press, New York, pp. 51–66.Google Scholar
  16. Chang, L.W., 1983, Protective effects of selenium against methylmercury neurotoxicity: A morphological and biochemical study, Exp. Pathol. 23:143.PubMedCrossRefGoogle Scholar
  17. Chang, L.W., 1984a, Trimethyltin-induced hippocampal lesions at various neonatal ages, Bull. Environ. Contam. Toxicol. 33:295.CrossRefGoogle Scholar
  18. Chang, L.W., 1984b, Hippocampal lesions induced by TMT in the neonatal rat brain, Neurotoxicology 5:205.Google Scholar
  19. Chang, L.W., 1985, Neuropathological effects of toxic metal ions, in: Metal Ions in Neurology and Psychiatry, Alan R. Liss Series in Neurology and Neurobiology (S. Gabay, J. Harris, and B.T. Ho, eds.), Alan R. Liss, New York, pp. 207–230.Google Scholar
  20. Chang, L.W., 1986, Neuropathology of trimethyltin: A proposed pathogenetic mechanism, Fundam. Appl. Toxicol. 6:217.PubMedCrossRefGoogle Scholar
  21. Chang, L.W., 1987a, Central nervous system changes: Selective and non-selective effects, in: Structural and Functional Effectsof Neurotoxicants: Organometals (H.A. Tilson and S.B. Sparber, eds.), John Wiley, New York, pp. 82–116.Google Scholar
  22. Chang, L.W., 1987b, A proposed pathogenic mechanism on trimethyltin-induced lesions in the hippocampus of adult andneonatal rats, in: Biological Trace Element Research (J. Pounds, ed.), Humana Press, New York, pp. 77–88.Google Scholar
  23. Chang, L.W., 1987c, Experimental neuropathology of organic mercurials, in: The Toxicity of Methylmercury (Z. Annau and C.Eccles, eds.), The Johns Hopkins University Press, Baltimore, pp. 54–72.Google Scholar
  24. Chang, L.W., 1990, Neurotoxicity of trimethyltin in hippocampus: A hyperexcitatory toxicity, Korean J. Toxicol. 6(2):191.Google Scholar
  25. Chang, L.W., and Dyer, R.S., Effects of trimethyltin on sensory neurons, Neurobehay. Toxicol. Teratol. 5:673.Google Scholar
  26. Chang, L.W., and Dyer, R.S., 1984, Trimethyltin-induced zinc depletion in rat hippocampus, in: Neurobiology of Zinc,Vol. II,Alan R. Liss Series in Neurology and Neurobiology (Frederickson, C., and Howell, G., eds.), Alan R. Liss, New York, pp.175–190.Google Scholar
  27. Chang, L.W., and Dyer, R.S., 1985a, Septotemporal gradients of trimethyltin-induced hippocampal lesions, Neurobehay. Toxicol. Teratol. 7:43.Google Scholar
  28. Chang, L.W., and Dyer, R.S., 1985b, Early effects of trimethyltin in the dentate gyms basket cells: A morphological study, J. Toxicol. Environ. Health 16:641CrossRefGoogle Scholar
  29. Chang, L.W., and Hartmann, H.A., 1972a, Ultrastructural studies of the nervous system after mercury intoxication, I. Pathological changes in the nerve cell bodies, Acta Neuropathol. 20:122.CrossRefGoogle Scholar
  30. Chang, L.W., and Hartmann, H.A., 1972b, Ultrastructural studies of the nervous system after mercury intoxication, II. Pathological changes in the nerve fibers, Acta Neuropathol. 20:316.CrossRefGoogle Scholar
  31. Chang, L.W., and Hartmann, H.A., 1972c, Electron microscopic histochemical study on the localization and distribution of mercury in the nervous system after mercury intoxication, Exp. Neurol. 35:122.CrossRefGoogle Scholar
  32. Chang, L.W., and Hartmann, H.A., 1972d, Blood-brain barrier dysfunction in experimental mercury intoxication, Acta Neuropathol. 21:179.CrossRefGoogle Scholar
  33. Chang, L.W., and Suber, R., 1982, Protective effects of selenium or methylmercury toxicity: A possible mechanism, Bull. Environ. Contamin. Toxicol. 29:285.CrossRefGoogle Scholar
  34. Chang, L.W., Desnoyers, P.A., and Hartmann, H.A., 1972a, Quantitative cytochemical studies of RNA in experimental mercury poisoning, I. Changes in RNA content, J. Nueropathol. Exp. Neurol. 31:389.CrossRefGoogle Scholar
  35. Chang, L.W., Martin, A.H., and Hartmann, H.A., 1972b, Quantitative autoradiographic study of the RNA synthesis in the neurons after mercury intoxication, Exp. Neurol. 37:62.CrossRefGoogle Scholar
  36. Chang, L.W., Ganther, H.E., Dudley, A.W. Jr., and Sunde, M.L., 1976, Modification of neuropathology of methylmercury by dietary selenium, Food Res. Inst. Annual Report,Univ. of Wisconsin-Madison, pp. 382–383.Google Scholar
  37. Chang, L.W., Dudley, A.W., Dudley, M.A., Ganther, H.E., and Sunde, M.L., 1977, Modification of neurotoxic effects of methylmercury by selenium, in: Neurotoxicology (L. Roizin, H. Shiraki, and N. Gircevic, eds.), Raven Press, New York, pp. 137–145.Google Scholar
  38. Chang, L.W., Gilbert, M.M., and Sprecher, T.A., 1978, Modification of the neurotoxic effects of methylmercury by vitamin E, Environ. Res. 17:356.PubMedCrossRefGoogle Scholar
  39. Chang, L.W., Reuhl, K.R., and Wade, P.R., 1981, Pathological effects of cadmium, in: Biogeochemistry of Cadmium. II. Health Effects (J.O. Nriagu, ed.), Elsevier, New York, pp. 783–840.Google Scholar
  40. Chang, L.W., Tiemeyer, T.M., Wenger, G.R., McMillan, D.E., and Reuhl, K.R., 1982a, Neuropathology of trimethyltin intoxication, I. Light microscopic study, Environ. Res. 29:435.CrossRefGoogle Scholar
  41. Chang, L.W., Tiemeyer, T.M., Wenger, G.R., McMillan, D.E., and Reuhl, K.R., 1982b, Neuropathology of trimethyltin intoxication, II. Electron microscopic study of the hippocampus, Environ. Res. 29:445.CrossRefGoogle Scholar
  42. Chang, L.W., Tiemeyer, T.M., Wenger, G.R., and McMillan, D.E., 1982c, Neuropathology of mouse hippocampus in acute trimethyltin intoxication, Neurobehay. Toxicol. Teratol. 4:149.Google Scholar
  43. Chang, L.W., Tiemeyer, T.M., Wenger, G.R., and McMillan, D.E., 1983a, Neuropathology of trimethyltin intoxication, III. Changes in the brain stem neurons, Environ. Res. 30:399.CrossRefGoogle Scholar
  44. Chang, L.W., Wenger, G.R., McMillan, D.E., and Dyer, R.S., 1983b, Species and strain comparison of acute neurotoxic effects of trimethyltin in mice and rats, Neurobehay. Toxicol. Teratol. 5:377.Google Scholar
  45. Chang, L.W., Tilson, H.A., and Walsh, T.J., 1984a, Neuropathological changes induced by triethyl and trimethyl led corn-pounds, Toxicologist 4:164.Google Scholar
  46. Chang, L.W., Wenger, G.R., and McMillan, D.E., 1984b, Neuropathology of trimethyltin intoxication, IV. Changes in the spinal cord, Environ. Res. 34:123.CrossRefGoogle Scholar
  47. Chang, L.W., Hough, A.J., Bivens, F., and Cockerill, D., 1989, Effects of adrenalectomy and corticosterone on hippocampal lesions induced by trimethyltin, Biomed. Environ. Sci. Res. 2:54.Google Scholar
  48. Chen, R.W., and Ganther, H.E., 1975, Some properties of a unique cadmium-binding moiety in the soluble fraction of rat testes, Environ. Physiol. Biochem. 5:235.PubMedGoogle Scholar
  49. Chen, R.W., Whanger, P.D., and Fang, S.C., 1974a, Diversion of mercury binding in rat tissues by selenium: A possible mechanism of protection, Pharm. Res. Comm. 6:571.CrossRefGoogle Scholar
  50. Chen, R.W., Wagner, P.A., Hoekstra, W.G., and Ganther, H.E., 1974b, Affinity labelling studies with ‘mcadmium in cadmium-induced testicular injury in rats, J. Reprod. Fertil., 38:293CrossRefGoogle Scholar
  51. Chen, R.W., Lacy, V.L., and Whanger, P.D., 1975a, Effect of selenium on methylmercury binding to subcellular and soluble proteins in rat tissues, Res. Commun. Chem. Pathol. Pharm. 12:297.Google Scholar
  52. Chen, R.W., Whanger, P.D., and Weswig, P.H., 1975b, Selenium-induced redistribution of cadmium-binding to tissue proteins: A possible mechanism of protection against cadmium toxicity, Bioinorg. Chem. 4:125.CrossRefGoogle Scholar
  53. Chung, A.S., Maines, M.D., and Reynolds, W.A., 1982, Inhibition of the enzymes of glutathione metabolism by mercuric chloride in the rat kidney: Reversal by selenium, Bioch. Pharmacol. 31:3093. CrossRefGoogle Scholar
  54. Clarkson, T.W., 1987, Metal toxicity in the central nervous system, Environ. Health Perspect. 75:59.PubMedCrossRefGoogle Scholar
  55. Cooper, G.P., Suszkiw, T.B., and Manalis, R.S., 1984, Heavy metals: Effects on synaptic transmission, Neurotoxicology 5(3):247.PubMedGoogle Scholar
  56. Cotzias, G.C., and Papavasiliou, P.S., 1964, Specificity of zinc pathway through the body: Homeostatic considerations, Am. J. Physiol. 206:787.PubMedGoogle Scholar
  57. Davies, N.T., and Campbell, J.K., 1977, The effect of cadmium on intestinal copper absorption and binding in the rat, Life Sci. 20:955.PubMedCrossRefGoogle Scholar
  58. De Haven, D.L., Walsh, T.J., and Mailman, R.B., 1984, Effects of TMT on dopaminergic and serotonergic functions in the CNS, Toxicol. Appl. Pharmacol. 74:182.CrossRefGoogle Scholar
  59. Doctor, S.V., Costa, L.G., Kendall, D.A., and Murphy, S.D., 1982a, Trimethyltin inhibits uptake of neurotransmitters into mouse forebrain synaptocomes, Toxicology 25:213.CrossRefGoogle Scholar
  60. Doctor, S.V., Costa, L.G., Kendall, D.A., and Murphy, S.D., 1982b, Trimethyltin in various tissues of the male mouse, Toxicol. Lett. 17:43.CrossRefGoogle Scholar
  61. Donaldson, J., and Barbeau, A., 1985, Manganese neurotoxicity: Possible clues to the etiology of human brain disorders, in: Metal Ions in Neurology and Psychiatry (S. Gabay, T. Harris, and B.T. Ho, eds.), Alan R. Liss, New York, pp. 259–285.Google Scholar
  62. Flora, S.J., Behari, J.R., Ashquin, M., and Tandon, S.K., 1982, Time-dependent protective effect of selenium against cadmium-induced nephrotoxicity and hepatotoxicity, Chem. Biol. Interact. 42:345.PubMedCrossRefGoogle Scholar
  63. Fox, M.R.S., 1974, Effect of essential minerals on cadmium toxicity, J. Food Sci. 39:321.CrossRefGoogle Scholar
  64. Ganther, H.E., 1978, Modification of methylmercury toxicity and metabolism by selenium and vitamin E: Possible mechanisms, Environ. Health Persp. 25:71.CrossRefGoogle Scholar
  65. Ganther, H.E., and Sunde, M.L., 1974, Effects of tuna fish and selenium on the toxicity of methylmercury: A progress report, Science 39:1.Google Scholar
  66. Goldstein, G.W., 1992, Blood-brain barrier as target for lead toxicity, Neurotoxicology (in press).Google Scholar
  67. Grath, D.H., Vignati, L., Lowry, L., Mackay, G., and Stokinger, H.E., 1973, Mutual antagonistic and synergistic effects ofinorganic selenium and mercury salts in chronic experiments, in: Trace Substances in Environ. Health (D.D. Hemphill, ed.), Univ. of Missouri Press, Columbia, MO, pp. 187–189.Google Scholar
  68. Grun, M., Anke, M., and Partschefeld, M., 1977, Cadmium toxicity, in: Kadmium-Symposium, Friedrich-Schillr-Universitat, Jena, German Democratic Republic, 1977.Google Scholar
  69. Gunn, S.A., Gould, T.C., and Anderson, W.A.D., 1966, Protective effect of thiol compounds against cadmium-induced vascular damage to testis, Proc. Soc. Exp. Biol. Med. 122:1036.PubMedGoogle Scholar
  70. Hamilton, D.L., and Smith, M.W., 1977, Cadmium inhibits calcium absorption in rat intestine, J. Physiol. 265(1):54.Google Scholar
  71. Hasan, M.Z., and Seth, T.D., 1981, Effects of lead and zinc administration on liver, kidney, and brain levels of copper, lead, manganese, and zinc and on erythrocyte ALA-D activity in rats, Toxicol. Lett. 7:353.PubMedCrossRefGoogle Scholar
  72. Herman, S.P., Klein, R., Talley, F.A., and Krigman, M.R., 1973, An ultrastructural study of methylmercury-induced primary sensory neuropathy in rats, Lab. Invest. 28:104.PubMedGoogle Scholar
  73. Hikal, A.H., Light, G.W., Shikker, W., Scarlet, A., and Ali, A.F., 1988, Determination of amino acid in different regions of rat brain application to acute effects of TMT, Life Sci. 42:2029.PubMedCrossRefGoogle Scholar
  74. Hill, C.H., Matrone, G., Payne, W.L., and Barber, C.W., 1963, In vivo interactions of cadmium with copper, zinc and iron, J. Nutr. 80:227.PubMedGoogle Scholar
  75. Holmberg, R.E. Jr., and Ferm, V.H., 1969, Interrelationships of selenium, cadmium, and arsenic in mammalian teratogenesis, Arch. Environ. Health 18:873PubMedGoogle Scholar
  76. Hsu, F.S., Krook, L., Pond, W.G., and Duncan, J.R., 1975, Interaction of dietary calcium with toxic levels of lead and zinc in pigs, J. Nutr. 105:112.Google Scholar
  77. Iwata, H., Okamoto, H., and Ohsawa, Y., 1973, Effect of selenium on methylmercury poisoning, Res. Commun. Chem. Pathol. Pharm. 5:673.Google Scholar
  78. Jacobs, J.M., 1980, Vascular permeability and neural injury, in: Experimental and Clinical Neurotoxicology (P.S. Spencer and H.H. Schaumburg, eds.), Williams and Wilkins, Baltimore, pp. 102–117.Google Scholar
  79. Jennette, K.W., 1981, Role of metals in carcinogenesis: Biochemistry and metabolism, Environ. Health Perspect. 40:233.PubMedCrossRefGoogle Scholar
  80. Johnson, S.L., and Pond, W.G., 1974, Inorganic vs. organic Hg toxicity in growing rats: Protection by dietary Se but not Zn, Nutr. Rep. Intl. 9:135.Google Scholar
  81. Kar, A.B., Das, R.P., and Mukerji, B., 1960, Prevention of cadmium-induced changes in the gonads of rats by zinc andselenium. A study in antagonism between metals in the biological system, Proc. Natl. Inst. Sci. India 26:40.Google Scholar
  82. Katsuki, S., Hirai, S., and Terao, T., 1957, On the disease of central nervous system in Minamata District with unknown etiology, with special references to the clinical observation, Kumamoto Igakkai Zasshi 31 (Suppl 23):110.Google Scholar
  83. Kobayashi, J., 1974, Effects of cadmium on calcium metabolism of rats, in: Trace Substances in Environmental Health VII(D.D. Hemphill, ed.), Univ. of Missouri, Columbia, MO, pp. 263–280.Google Scholar
  84. Kosta, L., Byrne, A.R., and Zelenko, V., 1975, Correlation between selenium and mercury in man following exposure toinorganic mercury, Nature 254:238.PubMedCrossRefGoogle Scholar
  85. Lajtha, A., 1962, The brain barrier system, in: Neurochemistry, 2nd ed. (K.A.C. Elliott, I.H. Page, and J.H. Quastel, eds.), Charles C. Thomas, Springfield, IL, pp. 229–430.Google Scholar
  86. Larsson, S.E., and Piscator, M., 1971, Effect of cadmium on skeletal tissue in normal and calcium-deficient rats, Isr. J. Med. Sci., 7:495.PubMedGoogle Scholar
  87. Lederer, L.B., and Bing, F.C., 1940, Effect of calcium and phosphorus on retention of lead by growing organisms, JAMA 114:2457.Google Scholar
  88. Mahaffey-Six, K., and Goyer, R.A., 1970, Experimental enhancement of lead toxicity by low dietary calcium, J. Lab. Clin. Med. 76:933.Google Scholar
  89. Mailman, R.B., Krigman, M.R., Frye, G.D., and Hannin, Z., 1983, Effects of postnasal trimethyltin or triethyltin treatment of CNS catecholamines, GABA, and acetyl choline systems in the rat, J. Neurochem. 40:1423.PubMedCrossRefGoogle Scholar
  90. Mason, K.E., and Young, J.O., 1967, Effectiveness of selenium and zinc in protecting against cadmium-induced injury of the rat testis, in: Symposium: Selenium in Biomedicine (O.H. Muth, J.E. Oldfield, and P.H. Weswig, eds.), AVI Westport, CT, pp. 383–394.Google Scholar
  91. McEwen, B.S., Gerlach, J.L., and Micco, D.J., 1975, Putative glucocorticoid receptors in hippocampus and other regions of the rat brain, in: The Hippocampus,Vol. 1 (R.L. Isaacson, and K.H. Pribram, eds.), pp. 285–322.CrossRefGoogle Scholar
  92. McLachlan, D.R.C., and Famell, B.J., 1985, Aluminum and neuronal degeneration, in: Metal Ions in Neurology and Psychiatry (S. Gabay, J. Harris, and B.T. Ho, eds.), Alan R. Liss, New York, pp. 69–87.Google Scholar
  93. Minnema, D.J., 1989, Neurochemical alterations in lead intoxication—an overview, in: Comments on Toxicology Vol. 3(3), (L.W. Chang, ed.), Gordon and Breach, London, pp. 207–224.Google Scholar
  94. Morikawa, N., 1961, Pathological studies on organic mercury poisoning, Kumamoto Med. J. 14:71.Google Scholar
  95. Morrison, J.N., Quarterman, J., and Humphries, W.R., 1977, The effects of dietary calcium and phosphate on lead poisoning in rats, J. Comp. Pathol. 87:417.PubMedCrossRefGoogle Scholar
  96. Naalsund, L.V., Suen, C.N., and Fonnum, F., 1985, Changes in neurobiological parameters in the hippocampus after exposure to TMT, Neurotoxicology 6:145.PubMedGoogle Scholar
  97. Nath, R., Prasad, R., Palinal, V.K., and Chopra, R.K., 1984, Molecular basis of cadmium toxicity, Prog. Food Nutr. Sci. 8:109.PubMedGoogle Scholar
  98. Oh, S.H., Ganther, H.E., and Hoekstra, W.G., 1974, Selenium as a component of glutathione peroxidase isolated from bovine erythrocytes, Biochemistry 13:1925.CrossRefGoogle Scholar
  99. Ohi, G., Nishigaki, S., Seki, H., Tamura, Y., Maki, T., Maeda, H., Ochiai, S., Yamada, H., Shimamura, Y., and Yagyu, H.,1975, Interaction of dietary methylmercury and selenium on accumulation and retention of these substances in rat organs, Toxicol. Appl. Pharmacol. 32:527.CrossRefGoogle Scholar
  100. Ohi, G., Nishigaki, S., Seki, H., Tamura, Y., Maki, T., Konno, H., Ochiai, S., Yamada, H., Shimamura, Y., Mizoguchi, I., and Yagyu, H., 1976, Efficacy of selenium in tuna and selenite in modifying methylmercury intoxication, Environ. Res. 12:49.PubMedCrossRefGoogle Scholar
  101. Okinaka, S., Yoshikawa, M., Mozai, T., Mizune, Y., Tereio, T., Wataushe, H., Ogiharo, K., Hirai, S., Yoshino, Y., Inose, T.,Azar, S., and Tsuda, M., 1964, Encephalomyalopathy due to an organic mercury compound, Neurology 4:68.Google Scholar
  102. Parizek, J., 1957, The destructive effect of cadmium ion on testicular tissue and its prevention by zinc, J. Endocrinol.15:56.PubMedCrossRefGoogle Scholar
  103. Parizek, J., Ostadalova, I., Benes, I., and Babicky, A., 1968, Pregnancy and trace elements: The protective effect of compounds of an essential trace element—selenium—against the peculiar toxic effects of cadmium during pregnancy, J. Reprod. Fertil. 16:507.PubMedCrossRefGoogle Scholar
  104. Parizek, J., Ostadalova, I., Kalouskova, J., Babicky, A., and Benes, J., 1971, The detoxifying effects of selenium interrelations between compounds of selenium and certain metals, in: Newer Trace Elements in Nutrition (W. Mertz, and W.E. Cornatzer, eds.), Marcel Dekker, New York, pp. 85–98.Google Scholar
  105. Parizek, J., Kalouskova, J., Babicky, A., Benes, J., and Pavlik, L., 1974, Interaction of selenium with mercury, cadmium and other toxic metals, in: Trace Elements Metabolism in Animals,Vol. 2 (W.G. Hoekstra, I.W. Suttie, H.E. Ganther, and W. Mertz, eds.), University Park Press, Baltimore, MD, pp. 119–125.Google Scholar
  106. Patel, M., Ardelt, B.K., Yim, G.K.W., and Isom, G.E., 1990, Interaction of trimethyltin with hippocampal glutamate,Neurotoxicology 11:601.Google Scholar
  107. Paterson, R.A., and Usher, D.R., 1971, Acute toxicity of methylmercury on glycolytic intermediates and adenine nucleotides of rat brain, Life Sci. 10:121.CrossRefGoogle Scholar
  108. Petering, H.G., 1980, The influence of dietary zinc and copper on the biologic effects of orally ingested lead in the rat, Ann. N.Y. Acad. Sci. 355:298.PubMedCrossRefGoogle Scholar
  109. Petering, H.G., Johnson, M.A., and Stemmer, K.L., 1971, Studies on zinc metabolism in the rat, I. Dose-response effects of cadmium, Arch Envir. Huth. 23:93.Google Scholar
  110. Petit, T.L., 1989, Issues in aluminum neurotoxicity, in: Comments on Toxicology Vol. 3(3) (L.W. Chang, ed.), Gordon and Breach, London, pp. 225–238.Google Scholar
  111. Pfaff, D.W., Silva, M.T.A., and Weiss, T.M., 1971, Telemetered recording of hormone effects on hippocampal neurons, Science 172:384.CrossRefGoogle Scholar
  112. Potter, S., and Matrone, G., 1974, Effect of selenite on the toxicity of dietary methylmercury and mercuric chloride in the rat, J. Nutr. 104:638.PubMedGoogle Scholar
  113. Powell, G.W., Miller, W.J., Morton, J.D., and Clifton, C.M., 1964, Influence of dietary cadmium level and supplemental zinc on cadmium toxicity in the bovine, J. Nutr. 84:205.PubMedGoogle Scholar
  114. Quarterman, J., and Morrison, J.N., 1975, The effects of dietary calcium and phosphorus on the retention and excretion of lead in rats, Br. J. Nutr. 34:351.PubMedGoogle Scholar
  115. Rehman, S., and Chandra, O., 1984, Regional interrelationships of zinc, copper, and lead in the brain following lead intoxication, Bull. Environ. Contam. Toxicol. 32:157.CrossRefGoogle Scholar
  116. Reuhl, K.R., Mackenzie, B., and Chang, L.W., 1982, Neuropathological lesions in mice following neonatal exposure to trimethyltin, Toxicologist 2:22.Google Scholar
  117. Richardson, M.E., and Fox, M.R.S., 1974, Dietary cadmium and enteropathy in Japanese quail. Histochemical and ultrastructural studies, Lab. Invest. 31:722.PubMedGoogle Scholar
  118. Richardson, M.E., Fox, M.R.S., and Fry, B.E. Jr., 1974, Pathological changes produced in Japanese quail by ingestion of cadmium, J. Nutr. 104:323.PubMedGoogle Scholar
  119. Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., and Hoekstra, W.G., 1973, Selenium: Biochemical role as a component of glutathione peroxidase, Science 179:588.PubMedCrossRefGoogle Scholar
  120. Salvaterra, P., Lown, B., Morganti, J., and Massaro, E.J., 1973, Alterations in neurochemical and behavioral parameters in the mouse induced by low doses of methylmercury, Acta Pharmacol. Toxicol. 33:177.CrossRefGoogle Scholar
  121. Silbergeld, E.K., and Hruska, R.E., 1980, Neurochemical investigations of low level lead exposure, in: Low Level Lead Exposure—The Clinical Implications of Current Research (H.L. Needleman, ed.), Raven Press, New York, pp. 135–156.Google Scholar
  122. Skerfring, S., 1978, Interaction between selenium and methylmercury, Environ. Health Perspect. 25:57.CrossRefGoogle Scholar
  123. Steinwall, O., 1961, Transport mechanisms in certain blood-brain barrier phenomena—a hypothesis, Acta Psychiatr. Neurol.Scand. 36 (Suppl 150):314.CrossRefGoogle Scholar
  124. Steinwall, O., 1969, Brain uptake of Se75: Selenomethionine after damage to blood-brain barrier by mercuric ions, Acta. Neurol. Scand. 45:362.PubMedCrossRefGoogle Scholar
  125. Steinwall, O., and Synder, H., Brain uptake of C14-cyclo-leucine after damage to blood-brain barrier by mercuric ions, Acta Neurol. Scand 45:369.CrossRefGoogle Scholar
  126. Stoewsand, G.L., Anderson, J.L., Gutenmann, W.H., and Lisk, D.J., 1977, Form of dietary selenium on mercury and selenium tissue retention and egg production in Japanese quail, Nutr. Rep. Intl. 15:81.Google Scholar
  127. Takeuchi, T., Kambara, T., Morikawa, N., Matsumoto, H., Shiraishi, Y., and Ito, H., 1959, Pathologic observations of the Minamata disease, Acta Pathol. Jpn. 9:768.Google Scholar
  128. Takeuchi, T., Matsumoto, H., Shiraishi, T., Koya, G., Saski, M., Hirata, Y., Fukinoto, K., Miyazaki, T., and Ogi, J., 1962a, An experimental pathological study on the etiology of Minamata’s disease, especially the role of methyl mercuric sulfide, Kumamoto Med. J. 16:713.Google Scholar
  129. Takeuchi, T., Morikawa, N., Matsumoto, H., and Shiraishi, Y., 1962b, A pathological study of Minamata disease in Japan, Acta Neuropathol. 2:40.CrossRefGoogle Scholar
  130. Task Group on Metal Interaction, 1978, Factors influencing metabolism and toxicity of metals: A consensus report, Environ. Health Perspect. 25:3.CrossRefGoogle Scholar
  131. Tobias, J.M., Lushbaugh, C.C., Path, H.M., Postel, S., Swift, M.N., and Gerard, R.W., 1946, The pathology and therapy with 2,3-dimercaptopropanol (BAL) of experimental Cd poisoning, J. Pharmacol. Exp. Ther. 87:102.PubMedGoogle Scholar
  132. Tokuomi, H., 1961, Minamata disease: An unusual neurological disorder occurring in Minamata, Japan, Kumamoto Med. J. 14:47.Google Scholar
  133. Tokuomi, H., Hirata, Y., and Miyazaki, T., 1966, Studies on Minamata disease, V. On the etiology of this disease, clinical and experimental studies, Kumamoto Igakkai Zasshi 34 (Suppl 3):78.Google Scholar
  134. Tower, D.B., 1962, Molecular transport across neural and non-neural membranes, in: Properties of Membranes and Diseases of the Nervous System, Springer, New York.Google Scholar
  135. Vallee, B.L., and Ulmer, D.D., 1972, Biochemical effects of mercury, cadmium, and lead, Ann. Rev. Biochem. 41:91.PubMedCrossRefGoogle Scholar
  136. Verity, M.A., Brown, W.J., and Cheung, M., 1975, Organic mercurial encephalopathy: In vivo and in vitro effects of methyl mercury on synaptosomal respiration, J. Neurochem. 25:759.PubMedCrossRefGoogle Scholar
  137. Ware, R.A., Chang, L.W., and Burkholder, P.M., 1974, An ultrastructural study on the blood-brain barrier dysfunction following mercury intoxication, Acta Neuropathol. (Berlin) 30:211.Google Scholar
  138. Washko, P.W., and Cousins, R.J., 1975, Effect of low dietary calcium on chronic cadmium toxicity in rats, Nutr. Rep. Intl. 11:113.Google Scholar
  139. Watanabe, I., 1977, Effect of triethyltin on the developing brain of the mouse, in: Neurotoxicology (L. Roizin, H. Shiraki, and N. Grcevic, eds.), Raven Press, New York, pp. 317–326.Google Scholar
  140. Watanabe, I., 1980, Organotins, in: Experimental and Clinical Neurotoxicology (P.S. Spencer, and H.H. Schaumburg, eds.), Williams and Wilkins, Baltimore, pp. 545–557.Google Scholar
  141. Webb, M., 1972, Protection by zinc against cadmium toxicity, Biochem. Pharmacol. 21:2767.PubMedCrossRefGoogle Scholar
  142. Welsh, S.O., and Soares, J.H., 1976, The protective effect of vitamin E and selenium against methylmercury toxicity in the Japanese quail, Nutr. Rep. Intl. 13:43Google Scholar
  143. Whanger, P.D., 1985, Metabolic interactions of selenium with cadmium, mercury, and silver, in: Advances in Nutritional Research, Vol. 7 (H.H. Draper, ed.), Plenum Press, New York, pp. 221–250.CrossRefGoogle Scholar
  144. Whanger, P.D., Ridlington, J.W., and Holcomb, C.L., 1980, Interactions of zinc and selenium on the binding of cadmium to rat tissue proteins, Ann. N.Y. Acad. Sci. 355:333.PubMedCrossRefGoogle Scholar
  145. Winder, C., and Lewis, P.D., 1985, The experimental neurotoxicity of lead: Neuropathological and neurochemical aspects, in:Metal Ions in Neurology and Psychiatry (S. Gabay, J. Harris, and B.T. Ho, eds.), Alan R. Liss, New York, pp. 231–245.Google Scholar
  146. Willoughby, R.A., MacDonald, E., McSherry, B.J., and Brown, G., 1972a, Lead poisoning and the interaction between leadand zinc poisoning in the foal, Can. J. Comp. Med. 36:348.Google Scholar
  147. Willoughby, R.A., Thirapatsakun, T., and McSherry, B.J., 1972b, Influence of rations low in calcium and phosphorus on blood and tissue lead concentrations in the horse, Am. J. Vet. Res. 33:1165.Google Scholar
  148. Wilson, W.E., Hudson, B.M., Kanamatsu, D., Kanamatsu, D., Walsh, T., Tilson, H., and Hong, J., 1986, TMT-induced alterations in brain amino acid, amines and amine metabolites: Relationship to hyperammoniemia, Neurotoxicology 7:63.PubMedGoogle Scholar
  149. Yoshino, Y., Mozai, T., and Nakao, K., 1966, Biochemical changes in the brain of rats poisoned with an alkyl mercuric compound with special reference to the inhibition of protein synthesis in brain cortex slide, J. Neurochem. 13:1223.PubMedCrossRefGoogle Scholar
  150. Meredith, P.A., Moore, M.R., and Goldberg, A., 1977, The effects of calcium on lead absorption in rats, Biochem. J. 166:531.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Louis W. Chang
    • 1
  1. 1.Departments of Pathology, Pharmacology, and ToxicologyUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations