Ion Channels pp 261-314 | Cite as

Neurogenetic Studies of Ion Channels in Drosophila

  • Chun-Fang Wu
  • Barry Ganetzky
Part of the Ion Channels book series (IC)


The enormous information handling capacity of nervous systems depends on the proper function of a rich variety of neurons and other excitable cells that display distinctive signal processing characteristics. This physiological complexity reflects cellular differences in the expression and regulation of ion channels. Genetic dissection has been successfully applied in elucidation of mechanisms underlying many biological processes in model systems. Drosophila has been a favored organism for such an approach to complex problems in higher organisms, such as function and development of the nervous system (Benzer, 1973; Pak and Pinto, 1976).


Potassium Channel Outward Current Dosage Compensation Membrane Excitability Larval Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, N., Robertson, G., and Ganetzky, B., 1991, A structural component of calcium-activated potassium channels encoded by the Drosophila slo locus, Science 253:551–555.PubMedGoogle Scholar
  2. Auld, V. J., Goldin, A. L., Krafte, D. S., Marshall, J., Dunn, J. M., Catterall, W. A., Lester, H. A., Davidson, N., and Dunn, R. J., 1988, A rat brain Na+ channel a subunit with novel gating properties, Neuron 1:449–461.PubMedGoogle Scholar
  3. Bader, C. R., Bernheim, L., and Bertrand, D., 1985, Sodium-activated potassium current in cultured avian neurons, Nature 317:540–542.PubMedGoogle Scholar
  4. Baker, K., and Salkoff, L., 1990, The Drosophila Shaker gene codes for a distinctive K+ current in a subset of neurons, Neuron 2:129–140.Google Scholar
  5. Belote, J. M., and Lucchesi, J. C., 1980a, Control of X chromosome transcription by the maleless gene in Drosophila,Nature 285:573–575.Google Scholar
  6. Belote, J. M., and Lucchesi, J. C., 1980b, Male-specific lethal mutations of Drosophila melanogaster, Genetics 96:165–186.Google Scholar
  7. Benzer, S., 1973, Genetic dissection of behavior, Sci. Am. 229:24–37.PubMedGoogle Scholar
  8. Budnik, V., Zhong, Y., and Wu, C.-F., 1990, Morphological plasticity of motor axons in Drosophila mutants with altered excitability, J. Neurosci. 10:3754–3768.PubMedGoogle Scholar
  9. Byerly, L., and Leung, H.-T., 1988, Ionic currents of Drosophila neurons in embryonic cultures, J. Neurosci. 8:4379–4393.PubMedGoogle Scholar
  10. Chung, S., Reinhart, P. H., Martin, B. L., Brautigan, D., and Levitan, I. B., 1991, Protein kinase activity associated with a reconstituted calcium-activated potassium channel, Science 253:560–562.PubMedGoogle Scholar
  11. Delgado, R., Hidalgo, P., Diaz, F., Latorre, R., and Labarca, P., 1991, A cyclic AMP-activated K+ channel in Drosophila larval muscle is persistently activated in dunce, Proc. Natl. Acad. Sci. USA 88:557–560.PubMedGoogle Scholar
  12. Dryer, S. E., Fujii, J., and Martin, A. R. A., 1989, Na+-activated K+ current in cultured brain stem neurones from chicks, J. Physiol. (London) 410:283–296.Google Scholar
  13. Drysdale, R., Warmke, J., Kreber, R., and Ganetzky, B., 1991, Molecular characterization of eag: a gene affecting potassium channels in Drosophila melanogaster, Genetics 127:497–505.PubMedGoogle Scholar
  14. Elkins, T., and Ganetzky, B., 1988, The roles of potassium currents in Drosophila flight muscles, J. Neurosci. 8:428–434.PubMedGoogle Scholar
  15. Elkins, T., and Ganetzky, B., 1990, Conduction in the giant nerve fiber pathway in temperature-sensitive paralytic mutants of Drosophila, J. Neurogenet. 6:207–219.PubMedGoogle Scholar
  16. Elkins, T., Ganetzky, B., and Wu, C.-F., 1986, A mutation of Drosophila eliminates a calcium-dependent potassium current, Proc. Natl. Acad. Sci. USA 83:8415–8419.PubMedGoogle Scholar
  17. Ganetzky, B., 1984, Genetic studies of membrane excitability in Drosophila: Lethal interaction between two temperature-sensitive paralytic mutations, Genetics 108:897–911.PubMedGoogle Scholar
  18. Ganetzky, B., 1986, Neurogenetic analysis of Drosophila mutations affecting sodium channels: Synergistic effects on viability and nerve conduction in double mutants involving tip-E, J. Neurogenet. 3:19–31.PubMedGoogle Scholar
  19. Ganetzky, B., 1991, Genetic analysis of ion channels in Drosophila, in: Genetic Strategies in Epilepsy Research (Epilepsy Res. Suppl. 4) (V. E. Anderson, W. A. Hauser, I. E. Leppik, J. L. Nochels, and S. S. Rich, eds.), Elsevier Science Publishers, Amsterdam, pp. 241–255.Google Scholar
  20. Ganetzky, B., and Wu, C.-F., 1982, Drosophila mutants with opposing effects on nerve excitability: Genetic and spatial interactions in repetitive firing, J. Neurophysiol. 47:501–514.PubMedGoogle Scholar
  21. Ganetzky, B., and Wu, C.-F., 1983, Neurogenetic analysis of potassium currents in Drosophila: Synergistic effects on neuromuscular transmission in double mutants, J. Neurogenet. 1:17–28.PubMedGoogle Scholar
  22. Ganetzky, B., and Wu, C.-F., 1985, Genes and membrane excitability in Drosophila, Trends Neurosci. 8:322–326.Google Scholar
  23. Ganetzky, B., and Wu, C.-F., 1986, Neurogenetics of membrane excitability in Drosophila, Annu. Rev. Genet. 20:13–44.PubMedGoogle Scholar
  24. Ganetzky, B., and Wu, C.-F., 1989, Molecular approaches to neurophysiology in Drosophila, in: Molecular Neurobiology (D. M. Glover and D. B. Hanna, eds.), Oxford University Press, Oxford, pp. 9–61.Google Scholar
  25. Ganetzky, B., Loughney, K., and Wu, C.-F., 1986, Analysis of mutations affecting sodium channels in Drosophila, Ann. N.Y. Acad. Sci. 479:325–337.PubMedGoogle Scholar
  26. Gautam, M., and Tanouye, M. A., 1990, Alteration of potassium channel gating: Molecular analysis of the Drosophila Sh 5 mutation, Neuron 5:67–73.PubMedGoogle Scholar
  27. Gho, M., and Ganetzky, B., 1992, Analysis of repolarization of presynaptic motor terminals in Drosophila larvae using potassium channel blocking drugs and mutations, J. Exp. Biol., in press.Google Scholar
  28. Gho, M., and Mallart, A., 1986, Two distinct Cat“-activated K” currents in larval muscle fibers of Drosophila melanogaster, Pfluegers Arch. 407:526–533.Google Scholar
  29. Gisselmann, G., Sewing, S., Madsen, B. W., Mallart, A., Angaut-Petit, D., Muller-Holtkamp, F., Ferrus, A., and Pongs, O., 1989, The interference of truncated with normal potassium channel subunits leads to abnormal behavior in the transgenic Drosophila melanogaster, EMBOJ. 8:2359–2364.Google Scholar
  30. Gorczyca, M. G., and Wu, C.-F., 1991, Single channel K+ currents in Drosophila muscle and their pharmacological block, J. Membr. Biol. 121:237–248.PubMedGoogle Scholar
  31. Guy, H. R., Durell, S. R., Warmke, J., Drysdale, R., and Ganetzky, B., 1991, Similarities in amino acid sequences in Drosophila eag and cyclic nucleotide-gated channels, Science, 245:730.Google Scholar
  32. Hall, J. C., 1982, Genetics of the nervous system in Drosophila, Q. Rev. Biophys. 15:223–479.PubMedGoogle Scholar
  33. Hall, J. C., and Kankel, D. R., 1976, Genetics of acetylcholinesterase in Drosophila melanogaster, Genetics 83:517–535.PubMedGoogle Scholar
  34. Hartung, K., 1985, Potentiation of a transient outward current by Na’ influx in crayfish neurones, Pfluegers Arch. 404:41–44.Google Scholar
  35. Haugland, F. N., and Wu, C.-F., 1986, Gene-dosage effects on a K+ current in Drosophila, Biophys. J. 49:168a.Google Scholar
  36. Haugland, F. N., and Wu, C.-F., 1987, Concommitant alteration of potassium channel gating and pharmacology in a Shaker mutant of Drosophila, Soc. Neurosci. Abstr. 13:530.Google Scholar
  37. Haugland, F. N., and Wu, C.-F., 1990, A voltage clamp analysis of gene-dosage effects of the Shaker locus on larval muscle potassium currents in Drosophila, J. Neurosci. 10:1357–1371.PubMedGoogle Scholar
  38. Hodgetts, R. B., 1975, The response of dopa decarboxylase activity to variations in gene dosage in Drosophila: A possible location of the structural gene, Genetics 79:45–54.PubMedGoogle Scholar
  39. Hodgkin, A. L., and Katz, B., 1949, The effect of temperature on the electrical activity of the giant axon of the squid, J. Physiol. (London) 109:240–249.Google Scholar
  40. Isacoff, E. Y., Jan, Y. N., and Jan, L. Y., 1990, Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes, Nature 345:530–534.PubMedGoogle Scholar
  41. Iverson, L. E., and Rudy, B., 1990, The role of the divergent amino and carboxyl domains on the inactivation properties of potassium channels derived from the Shaker gene of Drosophila, J. Neurosci. 10:2903–2916.PubMedGoogle Scholar
  42. Iverson, L. E., Tanouye, M. A., Lester, H. A., Davidson, N., and Rudy, B., 1988, A-type potassium channels expressed from Shaker locus cDNA, Proc. Natl. Acad. Sci. USA 85:5723–5727.PubMedGoogle Scholar
  43. Jackson, F. R., Wilson, S. D., Strichartz, G. R., and Hall, L. M., 1984, Two types of mutants affecting voltage-sensitive sodium channels in Drosophila melanogaster, Nature 308:189–191.PubMedGoogle Scholar
  44. Jackson, F. R., Gitshier, J., Strichartz, G., and Hall, L. M., 1985, Genetic modifications of voltage-sensitive sodium channels in Drosophila: Gene dosage studies for the seizure locus, J. Neurosci. 5:1144–1151.PubMedGoogle Scholar
  45. Jackson, F. R., Wilson, S. D., and Hall, L. M., 1986, The tip-E mutation of Drosophila decreases saxitoxin binding and interacts with other mutations affecting nerve membrane excitability, J. Neurogenet. 3:1–17.PubMedGoogle Scholar
  46. Jan, L. Y., and Jan, Y. N., 1990, A superfamily of ion channels, Nature 345:672.PubMedGoogle Scholar
  47. Jan, Y. N., Jan L. Y., and Dennis, M. J., 1977, Two mutations of synaptic transmission in Drosophila, Proc. R. Soc. London 198:87–108.Google Scholar
  48. Kamb, A., Iverson, L. E., and Tanouye, M. A., 1987, Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel, Cell, 50:405–413.PubMedGoogle Scholar
  49. Kamb, A., Tseng-Crank, J., and Tanouye, M. A., 1988, Multiple products of the Drosophila Shaker gene contribute to potassium channel diversity, Neuron 1:421–430.PubMedGoogle Scholar
  50. Kaplan, W. D., and Trout, W. E., III, 1969, The behavior of four neurological mutants of Drosophila, Genetics 61:339–409.Google Scholar
  51. Kasbekar, D. P., Nelson, J. C., and Hall, L. M., 1987, Enhancer of seizure: A new genetic locus in Drosophila melanogaster defined by interactions with temperature-sensitive paralytic mutations, Genetics 116:423–432.PubMedGoogle Scholar
  52. Kauvar, L. M., 1982, Reduced [3H1-tetradotoxin binding in the nap’ paralytic mutant of Drosophila, Mol. Gen. Genet. 187:172–173.PubMedGoogle Scholar
  53. Kernan, M. J., Kuroda, M. I., Kreber, R., Baker, B. S., and Ganetzky, B., 1991, nap’, a mutation affecting sodium channel activity in Drosophila, is an allele of mle, a regulator of X chromosome transcription, Cell 66:949–959.PubMedGoogle Scholar
  54. Knust, E., Tietze, K., and Campos-Ortega, J. A., 1987, Molecular analysis of the neurogenic locus enhancer of split of Drosophila melanogaster, EMBO J. 6:4113–4123.PubMedGoogle Scholar
  55. Komatsu, A., Sun, Y.-A., and Wu, C.-F., 1986, Different types of potassium channels in CNS neurons of Drosophila, Soc. Neurosci. Abstr. 12:1341.Google Scholar
  56. Komatsu, A., Singh, S., Rathe, P., and Wu, C.-F., 1990, Mutational and gene-dosage analysis of calcium-activated potassium channels in Drosophila: Correlation of microscopic and macroscopic currents, Neuron 4:313–321.PubMedGoogle Scholar
  57. Kretsinger, R. H., 1987, Calcium coordination and the calmodulin fold: Divergent versus convergent evolution, Cold Spring Harbor Symp. Quant. Biol. 52:499–510.PubMedGoogle Scholar
  58. Kulkarni, S. J., and Padhye, A., 1982, Temperature-sensitive paralytic mutations on the second and third chromosomes of Drosophila melanogaster, Genet. Res. 40:191–199.Google Scholar
  59. Kuroda, M. I., Kernan, M. J., Kreber, R., Ganetzky, B., and Baker, B. S., 1991, The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila, Cell 66:935–947.PubMedGoogle Scholar
  60. Lacerda, A. E., Kim, H. S., Ruth, P., Perez-Reyes, E., Flockerzi, V., Hofmann, F., Birnbaumer, L., and Brown, A. M., 1991, Normalization of current kinetics by interaction between the a and ß subunits of the skeletal muscle dihydropyridine-sensitive Cat+ channel, Nature 352:527–530.PubMedGoogle Scholar
  61. Levis, R., O’Hare, K., and Rubin, G. M., 1984, Effects of transposable element insertions on RNA encoded by the white gene of Drosophila, Cell 38:471–481.PubMedGoogle Scholar
  62. Levitan, I. B., 1988, Modulation of ion channels in neurons and other cells, Annu. Rev. Neurosci. 11:119–136.PubMedGoogle Scholar
  63. Lichtinghagen, R., Stocker, M., Wittka, R., Boheim, G., Stuhmer, W., Ferrus, A., and Pongs, O., 1990, Molecular basis of altered excitability in Shaker mutants of Drosophila melanogaster, EMBO J. 9:4399–4407.PubMedGoogle Scholar
  64. Lopez, G. A., Jan, Y. N., and Jan, L. Y., 1991, Hydrophobic substitution mutations in the S4 sequence alter voltage-dependent gating in Shaker K+ channels, Neuron 7:327–336.PubMedGoogle Scholar
  65. Loughney, K., Kreber, R., and Ganetzky, B., 1989a, Molecular analysis of the para locus, a sodium channel gene in Drosophila,Cell 58:1143–1154.Google Scholar
  66. Loughney, K., Stern, M., Kreber, R., and Ganetzky, B., 1989b, Genetic and molecular analysis of a gene encoding sodium channels in Drosophila, in: Molecular Biology of Neurorecaptors and Ion Channels, Vol. H 32 (A. Maelicke, ed.), NATO ASI Series, Springer-Verlag, Berlin, pp. 201–214.Google Scholar
  67. Lucchesi, J. C., and Manning, J. E., 1987, Gene dosage in compensation Drosophila melanogaster, Adv. Genet. 24:371–429.PubMedGoogle Scholar
  68. McCormack, K., Lin, J. W., Iverson, L. E., and Rudy, B., 1990a, Shaker K+ channel subunits form heteromultimeric channels with novel functional properties, Biochem. Biophys. Res. Commun. 171:1361–1371.Google Scholar
  69. McCormack, K., Lin, J. W., Ramaswami, M., Tanouye, M., Iverson, L., and Rudy, B., 1990, Heteromultimer formation can produce a large number of distinct K channels, Biophys. J. 57:209a.Google Scholar
  70. McCormack, K., Rudy, B., Ramaswami, M., Mathew, M. K., Iverson, L., McCormack, T. J., and Tanouye, M., 1990c, Mutagenesis of Shaker potassium channels: What’s behind the zipper? Biophys. J. 57:210a.Google Scholar
  71. MacKinnon, R., and Miller, C., 1989, Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor, Science 245:1382–1385.PubMedGoogle Scholar
  72. Mallart, A., Angaut-Petit, D., Bourret-Poulain, C., and Ferrus, A., 1991, Nerve terminal excitability and neuromuscular transmission in T(X:Y)V7 and Shaker mutants of Drosophila melanogaster, J. Neurogenet. 7:75–84.PubMedGoogle Scholar
  73. Miller, C., 1989, Genetic manipulation of ion channels: A new approach to structure and mechanism, Neuron 2:1195–1205.PubMedGoogle Scholar
  74. Miller, C., 1991, Annus mirabilis of potassium channels, Science 252:1092–1096.PubMedGoogle Scholar
  75. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312:121–127.PubMedGoogle Scholar
  76. Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H., and Numa, S., 1986, Existence of distinct sodium channel messenger RNAs in rat brain, Nature 320:188–192.PubMedGoogle Scholar
  77. O’Dowd, D. K., and Aldrich, R. W., 1988, Voltage-clamp analysis of sodium channels in wild-type and mutant Drosophila neurons, J. Neurosci. 8:3633–3643.PubMedGoogle Scholar
  78. O’Dowd, D. K., Germeraad, S. E., and Aldrich, R. W., 1989, Alterations in the expression and gating of Drosophila sodium channels by mutations in the para gene, Neuron 2:1301–1311.PubMedGoogle Scholar
  79. Okamoto, H., Sakai, K., Goto, S., Takasu-Ishikawa, E., and Hotta, Y., 1987, Isolation of Drosophila genomic clones homologous to the eel sodium channel gene, Proc. Jpn. Acad. 63B:284–288.Google Scholar
  80. Pak, W. L., and Pinto, L. H., 1976, Genetic approach to the study of the nervous system, Annu. Rev. Biophys. Bioeng. 5:397–448.PubMedGoogle Scholar
  81. Papazian, D., Schwarz, T. L., Tempel, B. L., Jan, Y. N., and Jan, L., 1987, Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila, Science 237:749–753.PubMedGoogle Scholar
  82. Papazian, D. M., Schwarz, T. L., Tempel, B. L., Timpe, L. C., and Jan, L. Y., 1988, Ion channels in Drosophila, Annu. Rev. Physiol. 50:379–394.PubMedGoogle Scholar
  83. Papazian, D. M., Timpe, L. C., Jan, Y. N., and Jan, L. Y., 1991, Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence, Nature 349:305–310.PubMedGoogle Scholar
  84. Pangs, O., Kecskemethy, N., Muller, R., Krah-Jentgens, I., Baumann, A., Kiltz, H. H., Canal, I., Llamazares, S., and Ferrus, A., 1988, Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila, EMBO J. 7:1087–1096.Google Scholar
  85. Ramaswami, M., and Tanouye, M., 1989, Two sodium chanel genes in Drosophila: Implications for channel diversity, Proc. Natl. Acad. Sci. USA 86:2079–2082.PubMedGoogle Scholar
  86. Rudy, B., 1988, Diversity and ubiquity of K channels, Neuroscience 25:729–749.PubMedGoogle Scholar
  87. Rudy, B., Kentros, C., and Vega-Saenz de Miera, E., 1991, Families of potassium channel genes in mammals: Toward an understanding of the molecular basis of potassium channel diversity, J. Mol. Cell. Neurosci. 2:89–102.Google Scholar
  88. Saito, M., and Wu, C.-F., 1991, Expression of ion channels and mutational effects in giant Drosophila neurons differentiated from cell division-arrested embryonic neuroblasts, J. Neurosci. 11:2135–2150.PubMedGoogle Scholar
  89. Saito, M., and Wu, C.-F., 1992, Ionic channels in cultured Drosophila neurons, in: Invertebrate Molecular Neurobiology (Y. Pichon, ed.), Birkhäuser Verlag, Basel, in press.Google Scholar
  90. Sakai, K., Okamoto, H., and Hotta, Y., 1989, Pharmacological characterization of sodium channels in the primary culture of individual Drosophila embryos: Neurons of a mutant deficient in a putative sodium channel gene, Cell Differ. Dev. 26:107–118.PubMedGoogle Scholar
  91. Salkoff, L., 1983, Genetic and voltage clamp analysis of a Drosophila potassium channel, Cold Spring Harbor Symp. Quant. Biol. 48:221–231.PubMedGoogle Scholar
  92. Salkoff, L., and Wyman, R, 1981, Genetic modification of potassium channels in Drosophila Shaker mutants, Nature 293:228–230.PubMedGoogle Scholar
  93. Salkoff, L., Butler, A., Wei, A., Scavarda, N., Giffen, K., Ifune, C., Goodman, R., and Mandel, G., 1987, Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila, Science 237:744–749.PubMedGoogle Scholar
  94. Schneider, I., and Blumenthal, A. B., 1978, Drosophila cell and tissue culture, in: The Genetics and Biology of Drosophila (M. Ashburner and T. R. F. Wright, eds.), Academic Press, New York, Vol. IIa, pp. 265–315.Google Scholar
  95. Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N., and Jan, L., 1988, Multiple potassium channel components are produced by alternative splicing at the Shaker locus in Drosophila, Nature 331:137–142.PubMedGoogle Scholar
  96. Seecof, R. L., and Unanue, R. L., 1968, Differentiation of embryonic Drosophila cells in vitro, Exp. Cell Res. 50:654–660.PubMedGoogle Scholar
  97. Siddiqi, O., and Benzer, S., 1976, Neurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 73:3253–3257.Google Scholar
  98. Singh, S., and Wu, C.-F., 1989, Complete separation of four potassium currents in Drosophila, Neuron 2:1325–1329.PubMedGoogle Scholar
  99. Singh, S., and Wu, C.-F., 1990, Properties of potassium currents and their role in membrane excitability in Drosophila larval muscle fibers, J. Exp. Biol. 152:59–76.PubMedGoogle Scholar
  100. Solc, C. K., and Aldrich, R. J., 1988, Voltage-gated potassium channels in larval CNS neurons of Drosophila, J. Neurosci. 8:2556–2570.PubMedGoogle Scholar
  101. Solc, C. K., Zagotta, W. N., and Aldrich, R. W., 1987, Single-channel and genetic analyses reveal two distinct A-type potassium channels in Drosophila, Science 236:1094–1098.PubMedGoogle Scholar
  102. Stern, M., Kreber, R., and Ganetzky, B., 1990, Effects of para gene dosage on behavior and axonal excitability in Drosophila, Genetics 124:133–143.PubMedGoogle Scholar
  103. Stuhmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H., and Numa, S., 1989, Structural parts involved in activation and inactivation of the sodium channel, Nature 339:597–603.PubMedGoogle Scholar
  104. Sun, Y.-A., and Wu, C.-F., 1985, Genetic alterations of single-channel potassium currents in dissociated central nervous system neurons of Drosophila, J. Gen. Physiol. 86:16–17a.Google Scholar
  105. Suzuki, D. T., Grigliatti, T., and Williamson, R., 1971, Temperature-sensitive mutations in Drosophila melanogaster, VII. A mutation (paraLe) causing reversible adult pyrolysis, Proc. Natl. Acad. Sci. USA 68:890–893.PubMedGoogle Scholar
  106. Tanouye, M. A., Ferrus, A., and Fujita, S. C., 1981, Abnormal action potentials associated with the Shaker locus of Drosophila, Proc. Natl. Acad. Sci. USA 78:6548–6552.PubMedGoogle Scholar
  107. Tanouye, M. A., Kamb, C. A., Iverson, L. E., and Salkoff, L., 1986, Genetics and molecular biology of ionic channels in Drosophila, Anna. Rev. Neurosci. 9:255–276.Google Scholar
  108. Timpe, L. C., and Jan, L. Y., 1987, Gene dosage and complementation analysis of the Shaker locus in Drosophila, J. Neurosci. 7:1307–1317.PubMedGoogle Scholar
  109. Timpe, L. C., Jan, Y. N., and Jan, L. Y., 1988, Four cDNA clones from the Sh locus of Drosophila induce kinetically distinct A-type potassium currents in Xenopus oocytes, Neuron 1:659–667.PubMedGoogle Scholar
  110. Vassilev, P. M., Scheuer, T., and Catterall, W. A., 1988, Identification of an intracellular peptide segment involved in sodium inactivation, Science 241:1658–1661.PubMedGoogle Scholar
  111. Warinke, J., Drysdale, R., and Ganetzky, B., 1991, A distinct potassium channel polypeptide encoded by the Drosophila eag locus, Science 252:1560–1562.Google Scholar
  112. Wei, A., and Salkoff, L., 1986, Occult Drosophila calcium channels and twinning of calcium and voltage-activated potassium channels, Science 233:780–782.PubMedGoogle Scholar
  113. Wei, A., Covarrubia, M., Butler, A., Baker, K., Pak, M., and Salkoff, L., 1990, K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse, Science 248:599–603.PubMedGoogle Scholar
  114. Wu, C.-F., 1988, Neurogenetic studies of Drosophila central nervous system neurons in culture, in: Cell Culture Approaches to Invertebrate Neurosciences (D. Beadle, G. Lees, and S. B. Kater, eds.), Academic Press, New York, pp. 149–187.Google Scholar
  115. Wu, C.-F., and Ganetzky, B., 1980, Genetic alteration of nerve membrane excitability in temperature-sensitive paralytic mutants of Drosophila melanogaster, Nature 286:814–816.PubMedGoogle Scholar
  116. Wu, C.-F., and Ganetzky, B., 1986, Genes and ionic channels in Drosophila, in: Ion Channels in Neural Membranes (J. M. Ritchie, R. D. Keynes, and L. Bolis, eds.), Liss, New York, pp. 407–423.Google Scholar
  117. Wu, C.-F., and Ganetzky, B., 1988, Genetic and pharmacological analysis of ion channels in Drosophila, in: Molecular Basis of Drug and Pesticide Action (G. G. Lunt, ed.), Elsevier, Amsterdam, pp. 311–323.Google Scholar
  118. Wu, C.-F., and Haugland, F. N., 1985, Voltage-clamp analysis of membrane currents in Shaker mutants, J. Neurosci. 5:2626–2640.PubMedGoogle Scholar
  119. Wu, C.-F., Ganetzky, B., Jan, L. Y., Jan, Y. N., and Benzer, S., 1978, A Drosophila mutant with a temperature-sensitive block in nerve conduction, Proc. Natl. Acad. Sci. USA 75:4047–4051.PubMedGoogle Scholar
  120. Wu, C.-F., Ganetzky, B., Haugland, F., and Liu, A. X., 1983a, Potassium current in Drosophila: Different components affected by mutations of two genes, Science 220:1076–1078.Google Scholar
  121. Wu, C.-F., Suzuki, N., and Poo, M.-M., 1983b, Dissociated neurons from normal and mutant Drosophila larval central nervous systems in cell culture, J. Neurosci. 3:1888–1899.Google Scholar
  122. Wu, C.-F., Tsai, M.-C., Chen, M.-L., Zhong, Y., Singh, S., and Lee, C.Y., 1989, Actions of dendrotoxin on K+ channels and its effects on neuromuscular transmission in synergy with K+ channel-specific drugs and mutations in Drosophila melanogaster, J. Exp. Biol. 147:21–41.PubMedGoogle Scholar
  123. Wu, C.-F., Sakai, K., Saito, M., and Hotta, Y., 1990, Giant Drosophila neurons differentiated from cytokinesis-arrested embryonic neuroblasts, J. Neurobiol. 21:499–507.PubMedGoogle Scholar
  124. Yamamoto, D., and Suzuki, N., 1989a, Characterization of single non-inactivating potassium channels in primary neuronal cultures of Drosophila, J. Exp. Biol. 145:173–184.Google Scholar
  125. Yamamoto, D., and Suzuki, N., 1989b, Two distinct mechanisms are responsible for single K channel block by internal tetraethylammonium ions, Am. J. Physiol. 256:683-C687.Google Scholar
  126. Zagotta, W. N., Brainard, M. S., and Aldrich, R. W., 1988, Single-channel analysis of four distinct classes of potassium channels in Drosophila muscle, J. Neurosci. 8:4765–4779.PubMedGoogle Scholar
  127. Zagotta, W. N., Germeraad, S., Garber, S. S., Hoshi, T., and Aldrich, R. W., 1989, Properties of ShB A-type potassium channels expressed in Shaker mutant Drosophila by germline transformation, Neuron 3:773–782.PubMedGoogle Scholar
  128. Zhong, Y., 1991, Activity-dependent mechanisms underlying synaptic plasticity in Drosophila memory mutants, Ph.D. thesis, University of Iowa, Iowa City.Google Scholar
  129. Zhong, Y., and Wu, C.-F., 1991, Alternative of four identified K+ currents in Drosophila muscle by mutations eag, Science 252:1562–1564.PubMedGoogle Scholar
  130. Zhong, Y., Budnik, V., and Wu, C.-F., 1992, Synaptic plasticity in Drosophila memory and hyperexcitable mutants: Role of cAMP cascade, J. Neurosci. 12:644–651.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Chun-Fang Wu
    • 1
  • Barry Ganetzky
    • 2
  1. 1.Department of BiologyUniversity of IowaIowa CityUSA
  2. 2.Laboratory of GeneticsUniversity of WisconsinMadisonUSA

Personalised recommendations