The Physics of Ion-Beam Lithography

  • Kamil A. Valiev
Part of the Microdevices book series (MDPF)

Abstract

Ion beams are used for very diverse purposes in electronics and can be divided into three categories: 1) micromilling by removing material, 2) controlling changes in the properties of a material by doping, and 3) analyzing the structure and composition of materials. Figure 3-1 shows the physical processes that occur when an ion beam E < 1 MeV interacts with a solid target and how they are used in electronic technology and diagnostics. The parameters of the beams used in technology and diagnostics work are shown in Table 3-1, and the energy and dose ranges of the ion beams are shown pictorially in Fig. 3-2.(2) Thus, the physical theory presented in this chapter may be thought of as the theoretical foundation for not only ion-beam lithography, but for ion-beam technology and diagnostics as well. As can be seen, the energies of the beams used in electronics range from a few keV to 100 MeV and the doses are 109-1019 ions/cm2. A surface is machined by sputtering the material with low-energy ions. A controlled change in a material’s properties is accomplished by implanting fixed amounts of impurities in the material. Familiar examples of changing the properties of a semiconductor material are the creation of “buried layers,” isolating transistor regions in an integrated circuit, and altering the charge in the SiO2 oxide of a SiO2-Si structure in order to change the threshold voltage of a field-effect transistor, etc.

Keywords

Microwave Recombination Tungsten Nitride Styrene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Muray and J. J. Muray, Vac., 35. Nos. 10, 11, 467–477 (1985).CrossRefGoogle Scholar
  2. 2.
    J. Gulai, Proc. Summer School on Surface Physics, Pergamon Press (1980).Google Scholar
  3. 3.
    G. Stengl, R. Kaitna, H. Loscher, et al., J. Vac. Sci. Technol., 16, No. 6, 1883–1885 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    A. Wagner, D. Barr, T. Venkatesan, el al., J. Vac. Sci. Technol., 19, No. 4, 1363–1373 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    K. A. Valiev, V. A. Danilov, K. A. Drakin, el al., Mikroelektronika, 11, No. 4, 323–327 (1982).Google Scholar
  6. 6.
    L. Karapiperis, C. A. Lee, L. Ruoff, et al., J. Vac. Sci. Technol., 19, No. 1, 18–22 (1981).CrossRefGoogle Scholar
  7. 7.
    A. R. Neureuther, “Microlithography with soft x-rays” in: Investigations by Synchrotron Radiation (H. Winick and S. Doniach, editors) Plenum Press, New York (1980), pp. 223–275.CrossRefGoogle Scholar
  8. 8.
    M. B. Heritage, J. Vac. Sci. Technol., 12, No. 6, 1135–1140 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    D. B. Rensch, R. L. Seliger, G. Csonsky, et al., J. Vac. Sci. Technol., 16m, No. 6, 1897–1900 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    K. A. Valiev, L. V. Velikov, V. D. Vemer, and A. V. Rakov, Elektronnaya Promyshlennost, No. 1, 36–38 (1983).Google Scholar
  11. 11.
    M. A. Kumakhov and F. F. Komarov, Energy Losses and Ion Ranges in Solids [in Russian], Izdatelstvo Bclorusskogo Universiteta, Minsk (1979).Google Scholar
  12. 12.
    M. A. Kumakhov and G. Shirmer, Atom Collisions in Crystals [in Russian], Atomizdat, Moscow (1980).Google Scholar
  13. 13.
    E. E. Müller and T. T. Tsong, Field-ion Microscopy: Principles and Applications [Russian translation], Metallurgiya, Moscow (1972).Google Scholar
  14. 14.
    E. E. Müller and T. T. Tsong, Field-Ion Microscopy, Field Ionization, and Field Evaporation [Russian translation], Nauka, Moscow (1980).Google Scholar
  15. 15.
    T. Venkatesan, A. Wagner, and D. Barr, Appl. Phys. Lett., 38, No. 11, 943–945 (1981).ADSCrossRefGoogle Scholar
  16. 16.
    T. Venkatesan, A. Wagner, D. L. Mash, et al., Appl. Phys. Lett., 39, No. 11, 9–11 (1981).ADSCrossRefGoogle Scholar
  17. 17.
    P. D. Prewett and D. K. Jefferies, J. Appl. Phys., 13, 1747–1755 (1980).Google Scholar
  18. 18.
    G. S. Gibson and H. C. Eaton, J. Appl. Phys., 51, No. 10, 5537–5539 (1980).ADSCrossRefGoogle Scholar
  19. 19.
    J. W. Ward, J. Vac. Sci. Technol., 3, No. 1, 207–213 (1985).CrossRefGoogle Scholar
  20. 20.
    R. Gomer, Appl. Phys., 19, 365 (1979).ADSCrossRefGoogle Scholar
  21. 21.
    T. Ishitani and H. Tamura, Appl. Phys., 23, 193 (1980).ADSCrossRefGoogle Scholar
  22. 22.
    D. R. Kingham and L. W. Swanson, Appl. Phys., A41, 157–169 (1986).ADSGoogle Scholar
  23. 23.
    A. L. Pregenzer, J. Appl. Phys., 58, 4509 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    L. Arian, A. L. Pregenzer, M. Barry, et al., J. Appl. Phys., 60, No. 11, 3821–3824 (1986).ADSCrossRefGoogle Scholar
  25. 25.
    G. Taylor, Proc. Roy. Soc., A280, 383–397 (1964).ADSGoogle Scholar
  26. 26.
    M. D. Gabovich, Usp. Fiz. Nauk, 140, No. 1, 137–151 (1983).CrossRefGoogle Scholar
  27. 27.
    L. D. Landau and E. M. Lifshits, Quantum Mechanics [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  28. 28.
    P. D. Prewett, G. L. R. Mair, and S. P. Thompson, J. Phys., D15, 1339 (1982).ADSGoogle Scholar
  29. 29.
    L. W. Swanson, G. A. Schwind, and A. E. Bell, J. Appl. Phys., 51, 3453 (1980).ADSCrossRefGoogle Scholar
  30. 30.
    T. Ishitani, K. Umemura, and H. Tamura, Jap. J. Appl. Phys., 24, No. 6, 451–454 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    G. L. R. Mair and T. Malvey, J. Microscopy, 142, Pt. 2, 191–200 (1986).CrossRefGoogle Scholar
  32. 32.
    G. L. R. Mair, J. Phys. D., 17, 2323 (1984).ADSCrossRefGoogle Scholar
  33. 33.
    A. E. Bell, G. A. Schwind, and L. W. Swanson, J. Appl. Phys., 53, No. 7, 4602–4665 (1982).ADSCrossRefGoogle Scholar
  34. 34.
    V. E. Krohn and G. R. Ringo, Appl. Phys. Lett., 27, No. 9, 479–481 (1975).ADSCrossRefGoogle Scholar
  35. 35.
    J. Orloff and L. W. Swanson, J. Vac. Sci. Technol., 15, No. 3, 845–848 (1978).ADSCrossRefGoogle Scholar
  36. 36.
    H. Liebl, Vacuum, 33, No. 9, 525–531 (1983).CrossRefGoogle Scholar
  37. 37.
    W. Lochte-Holtgreven, Plasma Diagnostics, North Holland, Amsterdam (1968).Google Scholar
  38. 38.
    K. Tokiguchi, N. Sakudo, and H. Koike, J. Vac. Sci. Technol., A2, No. 1, 29–34 (1984).ADSGoogle Scholar
  39. 39.
    G. Sidenius, The Niels Bohr Institute, Inst. Phys. Conf. Ser., No. 38, 1–11, (1978).Google Scholar
  40. 40.
    J. Asmussen and J. Root, Appl. Phys. Lett., 44, No. 4, 396–398 (1984).ADSCrossRefGoogle Scholar
  41. 41.
    J. Ishikawa and T. Takagi, Jap. J. Appl. Phys., 22, No. 3, 534–540 (1983).ADSCrossRefGoogle Scholar
  42. 42.
    I. S. Bitenskii, M. N. Murakhmetov, and E. S. Parilis, Zh. Tekh. Fiz., 49, 1044–1077 (1979).Google Scholar
  43. 43.
    K. Leiman, Interactions Between Radiation and Solids and the Formation of Elementary Defects [in Russian], Atomizdat, Moscow (1979).Google Scholar
  44. 44.
    L. D. Landau and E. M. Lifshits, Mechanics [in Russian], Fizmatgiz, Moscow (1958).MATHGoogle Scholar
  45. 45.
    D. B. Firsov, Zh. Eksp. Teor. Fiz., 32, 1464–1469 (1957); 33, 696–699 (1957).Google Scholar
  46. 46.
    E. J. Lindhard, M. Scharff, and H. Schiott, Mat. Fys. Medd. Dan. Vid. Sealst, 33, No. 14, 1–42 (1963).Google Scholar
  47. 47.
    D. R. Bates (editor). Atomic and Molecular Processes, Academic Press, New York-London (1962).Google Scholar
  48. 48.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  49. 49.
    O. B. Firsov, “A qualitative treatment of the average energy of electron excitation in atomic collisions,” Zh. Eksp. Tear. Fiz., 36, 1517–1523 (1959).Google Scholar
  50. 50.
    J. Lindhard and M. Scharff, Phys. Rev., 124, No. 1, 128–130 (1961).ADSCrossRefGoogle Scholar
  51. 51.
    P. Sigmund, Phys. Rev., 184, 383–416 (1969).ADSCrossRefGoogle Scholar
  52. 52.
    “Ion beam exposure profiles in PMMA—a computer simulation,” J. Vac. Sci. Technol., 19, No. 4, 1259–1263 (1981).Google Scholar
  53. 53.
    E. Bogh, P. Hogild, and I. Stensgaard, Rad. Eff., 7, 115–121 (1971).ADSCrossRefGoogle Scholar
  54. 54.
    N. F. Mott and E. A. Davis, Electronic Processes in Noncrystalline Materials [Russian translation], Mir, Moscow (1974).Google Scholar
  55. 55.
    P. Sigmund, Rev. Roum. Phys., 17, No. 7, 823–870 (1972).Google Scholar
  56. 56.
    R. Benedek. J. Appl. Phys., 52, No. 9, 5557–5565 (1981).ADSCrossRefGoogle Scholar
  57. 57.
    D. Pramanic and D. N. Seidman, Appl. Phys. Lett., 43, No. 7, 639–641 (1983); J. Appl. Phys., No. 1, 137–150 (1986).ADSCrossRefGoogle Scholar
  58. 58.
    L. Meyer, Phys. Stat. Sol., 44, No. 2, 253–268 (1971).ADSGoogle Scholar
  59. 59.
    G. Moliere, Z. Naturforsch., 2a, No. 3, 133–145 (1947); 3a, No. 2, 78–97 (1948).ADSGoogle Scholar
  60. 60.
    Yu. V. Gott, “Multiple scattering of slow particles,” Zh. Eksp. Teor. Fiz., 60, 1291–1294 (1971).Google Scholar
  61. 61.
    H. W. Lewis, Phys. Rev., 78, 526–529 (1950).ADSMATHCrossRefGoogle Scholar
  62. 62.
    A. M. Kol’chuzhkin and V. V. Uchaikin, Introduction to the Transmission of Particles Through Matter [in Russian], Atomizdat, Moscow (1978).Google Scholar
  63. 63.
    A. Marwick and P. Sigmund, Nucl. Inst. Meth., 126, No. 3, 317–323 (1975).ADSCrossRefGoogle Scholar
  64. 64.
    M. Komuro, N. Atoda, and H. Kawakatsu, J. Electrochemical Soc.: Solid State Sci. Technol., 126, No. 3, 483–490 (1979).Google Scholar
  65. 65.
    B. S. Danilin and Yu. V. Kireev, Ion Etching in Microstructures [in Russian], Sov. Radio, Moscow (1979).Google Scholar
  66. 66.
    I. A. MacHugh, “Secondary ion mass spectroscopy” in: Surface Analysis Methods [Russian translation], Mir, Moscow (1979), pp. 276–341.Google Scholar
  67. 67.
    G. Valyi, V. Schiller, J. Guimesi, and J. Gyulai, J. Thin Solid Films, 76, No. 3, 215–219 (1981).ADSCrossRefGoogle Scholar
  68. 68.
    N. V. Pleshivtsev, Cathodic Sputtering [in Russian], Atomizdat, Moscow (1968).Google Scholar
  69. 69.
    P. Sigmund, Rev. Roum. Phys., 17, No. 8, 969–1000; No. 9, 1079–1106 (1972).Google Scholar
  70. 70.
    P. C. Zalm, J. Appl. Phys., 54, No. 5, 2660–2666 (1983).ADSCrossRefGoogle Scholar
  71. 71.
    W. D. Wilson, L. G. Haggmark, and J. P. Biersack, Phys. Rev., B15, 2458 (1977).ADSGoogle Scholar
  72. 72.
    N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, and R. Shimizu, Rod. Eff. Lett., 57, 15 (1980).CrossRefGoogle Scholar
  73. 73.
    J. Bohdansky, J. Roth, and H. L. Bay, J. Appl. Phys., 51, 2861 (1980).ADSCrossRefGoogle Scholar
  74. 74.
    Y. Yamamura and J. Bohdansky, Vacuum, 35, No. 12, 561–571 (1985).CrossRefGoogle Scholar
  75. 75.
    H. Y. Rang, E. Kawato, and R. Shimizu, Jap. J. Appl. Phys., 24, No. 11, 1409–1416 (1985).ADSGoogle Scholar
  76. 76.
    M. T. Robinson, J. Appl. Phys., 54, No. 5, 2650–2659 (1985).ADSCrossRefGoogle Scholar
  77. 77.
    K. H. Krebs, Vacuum, 33, No. 9, 555–563 (1983).CrossRefGoogle Scholar
  78. 78.
    A. Koyama, T. Shikata, and H. Sakaire, Jap. J. Appl. Phys., 20, No. 1, 65–70 (1981).ADSCrossRefGoogle Scholar
  79. 79.
    R. A. Baragiola, E. V. Alonso, and A. Oliva Florio, Phys. Rev., B19, 121 (1979).ADSGoogle Scholar
  80. 80.
    E. S. Mashkova and V. A. Molchanov, Scattering Ions of Medium Energy on the Surfaces of Solids [in Russian], Atomizdat, Moscow (1980).Google Scholar
  81. 81.
    V. I. Veksler, Secondary Ion Emission from Metals [in Russian], Nauka, Moscow (1978).Google Scholar
  82. 82.
    H. C. Pfeiffer, J. Vac. Sci. Technol., 12, No. 6, 1170–1173 (1975).ADSCrossRefGoogle Scholar
  83. 83.
    H. C. Pfeiffer, J. Vac. Sci. Technol., 15, No. 3, 887–890 (1978).Google Scholar
  84. 84.
    Yu. V. Vorob’ev and V. A. Zhukov, Mikroelektronika, 11, 311–315 (1982).Google Scholar
  85. 85.
    V. A. Zhukov and K. A. Kalabushev, Mikroelektronika, 11, 316–321 (1982).Google Scholar
  86. 86.
    P. D. Prewett, Vacuum, 34, No. 10/11, 931–939 (1984).CrossRefGoogle Scholar
  87. 87.
    “Plasma-developed ion-implanted resists with submicron resolution,” J. Vac. Sci. Technol., 19, No. 4, 1379–1383 (1981).Google Scholar
  88. 88.
    A. Monfret and J. Bernard in: Ion Implantation in Semiconductors, Berlin (1971), pp. 389–396.Google Scholar
  89. 89.
    I. P. Akimchenko, V. V. Galkin, and V. V. Krasnopevtsev, Mikroelektronika, 2, 166–172 (1973).Google Scholar
  90. 90.
    A. P. Webb, A. J. Houghton, and P. D. Townsend, Rad. Eff., 30, 177–182 (1976).CrossRefGoogle Scholar
  91. 91.
    J. Mittenbacher and K. Gaztner, Rad. Eff., 49, No. 2, 113–118 (1980).Google Scholar
  92. 92.
    T. Kato, H. Morimoto, K. Saitoh, and H. Nakata, J. Vac. Sci. Technol., B3, No. 1, 50–53 (1985).Google Scholar
  93. 93.
    K. A. Valiev, V. A. Danilov, S. V. Peshekhonov, A. V. Rakov, and A. G. Shchuchkin, The Physics, Chemistry, and Mechanics of Surfaces, 3, 71–73 (1983).Google Scholar
  94. 94.
    M. Komuro, Thin Solid FUms, 92, 155–164 (1982).ADSCrossRefGoogle Scholar
  95. 95.
    H. Morimoto, Y. Sasaki, Y. Watakaba, and T. Kato, J. Appl. Phys., 159–160 (1985).Google Scholar
  96. 96.
    T. Shiokawa, I. Miyamoto, P. N. Kim, Y. Ochiai, A. Masuyama, K. Toyada, and S. Namba, Jap. J. Appl. Phys., 24, No. 11, 87 (1985).Google Scholar
  97. 97.
    K. Gamo, N. Takakura, N. Samoto, R. Shimizu, and S. Namba, Jap. J. Appl. Phys., 23, No. 5, 293–295 (1984).ADSCrossRefGoogle Scholar
  98. 98.
    R. L. Kubena, J. Y. M. Lee, R. A. Jullens, R. G. Brault, R. L. Middleton, and E. H. Stevens, IEEE Trans. Electron. Dev., ED-31, No. 9, 1186–1189 (1984).ADSCrossRefGoogle Scholar
  99. 99.
    S. Matsui, K. Mori, T. Shiokawa, K. Toyoda, and S. Namba, Jap. J. Appl. Phys., 23, No. 3, 172–174 (1984).ADSCrossRefGoogle Scholar
  100. 100.
    Y. Ochiai, K. Shihoyama, T. Shiokawa, A. Masuyama, K. Gamo, and S. Namba, Jap. J. Appl. Phys., 25, No. 7, 526–529 (1986).ADSCrossRefGoogle Scholar
  101. 101.
    H. Iguchi, Y. Hirayama, and H. Okamoto, Jap. J. Appl. Phys., 25, No. 7, 560–563 (1986).ADSCrossRefGoogle Scholar
  102. 102.
    S. Shukuri, Y. Wada, H. Masuda, T. Ishitani, and M. Tamura, Jap. J. Appl. Phys., 23, No. 8, 543–545 (1984).ADSCrossRefGoogle Scholar
  103. 103.
    R. L. Kubena, R. L. Seliger, and E. H. Stevens, Thin Solid Films, 92, 165–169 (1982).ADSCrossRefGoogle Scholar
  104. 104.
    K. Gamo, K. Moriizumi, Y. Ochiai, M. Takai, S. Namba, T. Shiokawa, and T. Minamisono, Jap. J. Appl. Phys., 23, No. 8, 642–645 (1984).ADSCrossRefGoogle Scholar
  105. 105.
    D. H. Narum and R. F. W. Pease, J. Vac. Sci. Technol., B4, No. 1, 154–158 (1986).Google Scholar
  106. 106.
    K. Shimizu, Jap. J. Appl. Phys., 22, No. 10, 1623–1626 (1983).MathSciNetADSCrossRefGoogle Scholar
  107. 107.
    T. Morita, E. Miyauchi, H. Arimoto, A. Takamori, Y. Bamba, and J. Hashimoto, J. Vac. Sci. Technol., B4, No. 4, 829–832 (1986).Google Scholar
  108. 108.
    G. Stengl, R. Kaitna, and H. Loschner, Solid State Technol., 25, No. 8, 104–109 (1982).Google Scholar
  109. 109.
    G. Stengl, R. Kaitna, and H. Loschner, J. Vac. Sci. Technol., 19, No. 4, 1358–1362 (1981).CrossRefGoogle Scholar
  110. 110.
    G. Stengl, H. Loschner, and J. J. Muray, Solid State Technol., Feb., 119–126 (1986).Google Scholar
  111. 111.
    G. Stengl, H. Loschner, W. Maurer, and P. Wolf, J. Vac. Sci. Technol., B4, No. 1, 194–200 (1986).Google Scholar
  112. 112.
    J. L. Bartelt, Solid State Technol., May, 215–220 (1986).Google Scholar
  113. 113.
    J. N. Randall, D. C. Flanders, and N. P. Economou, J. Vac. Sci. Technol., B1, No. 4, 1152 (1983).Google Scholar
  114. 114.
    J. N. Randall, E. I. Bromley, and N. P. Economou, J. Vac. Sci. Technol., B4, No. 1, 10–14 (1986).Google Scholar
  115. 115.
    J. N. Randall, D. C. Flanders, N. P. Economou, and J. P. Donnelly, J. Vac. Sci. Technol., B3, No. 1, 58–61 (1985).Google Scholar
  116. 116.
    J. N. Randall, L. A. Stem, and J. P. Donnelly, J. Vac. Sci. Technol., B4, No. 1, 201–204 (1986).Google Scholar
  117. 117.
    H. Ryssel, K. Haberger, and J. Kranz. J. Vac. Sci. Technol., 19, No. 4, 1358–1362 (1981).ADSCrossRefGoogle Scholar
  118. 118.
    T. M. Hall, A. Wagner, and L. F. Thompson, J. Vac. Sci. Technol., 16, No. 6, 1889–1892 (1979).ADSCrossRefGoogle Scholar
  119. 119.
    G. K. Selivanov, D. D. Mozzhukhin, and B. G. Gribov, Mikroelektronika, 9, No. 6, 517–539 (1980).Google Scholar
  120. 120.
    L. Karapiperis, I. Adesida, C. A. Lee, and E. D. Wolf, J. Vac. Sci. Technol., 19, No. 4, 1259–1263 (1981).ADSCrossRefGoogle Scholar
  121. 121.
    S. Matsui, K. Mori, K. Saigo, T. Shiokawa, and S. Namba, J. Vac. Sci. Technol., B4, No. 4, 845–849 (1986).Google Scholar
  122. 122.
    T. Shiokawa, Y. Aoyagi, P. H. Kim, K. Toyoda, and S. Namba, Jap. J. Appl. Phys., 23, No. 4, 232–233 (1984).ADSCrossRefGoogle Scholar
  123. 123.
    A. F. Burenkov, F. F. Komarov, M. A. Kumakhov, and M. M. Temkin, Tables of Ion Implantation Spatial Distributions. Translated from the Russian by S. I. Amoretty, Gordon and Breach (1986).Google Scholar
  124. 124.
    Y. Todokoro, Electronics Lett., 18, No. 13, 543–545 (1982).CrossRefGoogle Scholar
  125. 125.
    K. A. Valiev, A. V. Rakov, and A. G. Shchuchkin, Mikroelektronika, 13, No. 5, 387–391 (1984).Google Scholar
  126. 126.
    K. A. Valiev, T. M. Makhviladze, and M. E. Sarychev, Mikroelektronika, 14, No. 4, 291–300 (1985).Google Scholar
  127. 127.
    K. A. Valiev, and T. M. Makhviladze, The Physics, Chemistry, and Mechanics of Surfaces, No. 3, 57–67 (1985).Google Scholar
  128. 128.
    L. V. Velikov, Yu. I. Dorofeev, A. S. Kramarenko, V. E. Skurat, and V. L. Tal’roze, The Physics, Chemistry, and Mechanics of Surfaces, No. 6, 86–95 (1985).Google Scholar
  129. 129.
    A. Ya. Vainer, L. V. Velikov, Yu. I. Dorofeev, K. M. Dyumaev, V. F. Limanova, V. E. Skurat, and V. L. Tal’roze, Khim. Vys. Energ., 20, No. 3, 252–257 (1986).Google Scholar
  130. 130.
    K. Harakawa and Y. Yasuoka, J. Vac. Sci. Technol., B4, No. 1, 355–357 (1987).Google Scholar
  131. 131.
    T. Venkatesan, S. R. Forrest, M. L. Kaplan, P. H. Schmidt, C. A. Murray, W. L. Brown. B. J. Wilkens, R. F. Roberts, L. Rupp, Jr., and H. Schonhorn, J. Appl. Phys., 56, No. 10, 2778–2787 (1984).ADSCrossRefGoogle Scholar
  132. 132.
    K. A. Valiev, V. A. Galperin, D. V. Lomonosov, S. V. Peshekhonov, A. V. Rakov, and A. G. Shchuchkin, Mikroelektronika, 14, No. 5, 420–423 (1985).Google Scholar
  133. 133.
    S. Y. Kim, J. Choi, D. Pulver, J. A. Moore, J. C. Corelli, and A. J. Steckl, J. Vac. Sci. Technol., B4, No. 1, 403–408 (1986).Google Scholar
  134. 134.
    T. Izumi and T. Matsumori, in: Ion Implantation in Semiconductors, Osaka (1974), pp. 539–545.Google Scholar
  135. 135.
    N. N. Gerasimenko, G. M. Tseitlin, and S. V. Vasilev, Phys. Stat. Sol., (a)62, kl69–kl74 (1980).Google Scholar
  136. 136.
    K. Moriwaki, L. Aritome, and S. Namba, Jap. J. Appl. Phys., 20m, No. 7, 1305–1309 (1981).ADSCrossRefGoogle Scholar
  137. 137.
    K. A. Valiev, T. M. Makhviladze, and A. V. Rakov, Dokl. Akad. Nauk SSSR, 289, No. 4, 867–871 (1986).Google Scholar
  138. 138.
    K. A. Valiev, T. M. Makhviladze, and A. V. Rakov, Mikroelektronika, 15, No. 5, 392–397 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Kamil A. Valiev
    • 1
  1. 1.Academy of Sciences of the USSRMoscowUSSR

Personalised recommendations