Cellular and Metabolic Significance of Cellular Acid-Base Shifts in Human Stroke

  • K. M. A. Welch
  • Steven R. Levine
  • G. B. Martin
  • J. A. Helpern
Part of the Advances in Neurochemistry book series (ANCH, volume 7)

Abstract

Stroke is most often due to the occlusion of a single intracranial artery, resulting in incomplete focal ischemia. This has an immediate deleterious effect upon cerebral energy metabolism and dependent processes (Lowry and Passonneau, 1964). There is a rapid decrease of high-energy phosphate intermediates, a shift toward reduction of mitochondrial respiratory chain metabolites, increased lactic acid, and acidosis in the ischemic focus (Goldberg et al., 1966; Michenfelder and Theye, 1970). Most investigators have considered that acidosis causes or contributes in a major way to cellular damage in ischemic brain (for a review, see Welch and Barkley [1986]). In recent clinical studies of acute focal ischemic stroke, using the capability of 31p nuclear magnetic resonance spectroscopy (NMRS) to dynamically measure the brain intracellular pH, we observed a transition from acidosis to alkalosis in ischemic brain as early as 18 hr after the onset of stroke (Levine et al., 1987). Positron emission tomography (PET) has corroborated the finding of alkalosis in clinical studies of subacute and late focal ischemic stroke (Syrota et al., 1985; Hakim et al., 1987). A rapid transition from acidosis to alkalosis has also been observed in experimental stroke models of either focal or global complete or incomplete ischemia, with or without reperfusion (Kogure et al., 1980; Mabe et al., 1983; Paschen et al., 1985; Yoshida et al., 1985). In this chapter we explore in clinical patients with cerebral ischemia (1) the significance of brain acidosis and (2) the currently unknown mechanisms and meaning of what we have termed the acid-to-base pH “flip-flop.”

Keywords

Lactate Respiration Adenosine Pyridine Acidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, J. J. H., Grove T. H., Wong G. G., Gadian D. G., and Radda, G. K., 1980, Mapping of metabolites in whole animals by 31P NMR using surface coils, Nature 283:167–170.PubMedCrossRefGoogle Scholar
  2. Adams, H. P., Olinger, C., Marler J. R., Biller, J., Brott T. G., Barsan W. G., and Banwalt, K., 1988, Comparison of admission serum glucose concentration with neurologic outcome in cerebral infarction, Stroke 19:455–458.PubMedCrossRefGoogle Scholar
  3. Asplund, K., Hagg, E., and Helmers, C., 1980, The natural history of stroke in diabetic patients, Acta Med. Scand. 207:417–424.PubMedCrossRefGoogle Scholar
  4. Atkinson, D. E., 1968, The energy change of the adenylate pool as a regulatory parameter, Biochemistry 7:4030–4034.PubMedCrossRefGoogle Scholar
  5. Behar K. L., den Hollander J. A., Stromski M. E., Ogino, T., Shulman R. G., Petroff, O. A. C., and Prichard, J. W., 1983, High-resolution lH nuclear magnetic resonance study of cerebral hypoxia in vivo, Proc. Natl. Acad. Sci. USA 80:4945–4948.CrossRefGoogle Scholar
  6. Berger, L., and Hakim, A. M., 1986, The association of hyperglycemia with cerebral edema in stroke, Stroke 17:865–871.PubMedCrossRefGoogle Scholar
  7. Bottomley, P A., Drayer, B. P., and Smith, L. S., 1986, Chronic adult cerebral infarction studied by phosphorous NMR spectroscopy, Radiology 160:763–766.PubMedGoogle Scholar
  8. Choi M. U., and Abramson, M. B., 1978, Effects of pH changes and charge characteristics in the uptake of norepinephrine by synaptosomes of rat brain, Biochim. Biophys. Acta 540:337–345.PubMedCrossRefGoogle Scholar
  9. Chopp, M., Frinak, S., Walton D. R., Smith M. B., and Welch, K. M. A., 1987, Intracellular acidosis during and after cerebral ischemia: In vivo nuclear magnetic resonance study of hyperglycemia in cats, Stroke 18:919–923.PubMedCrossRefGoogle Scholar
  10. Chopp, M., Welch, K. M. A., Tidwell, C., and Helpern, J. A., 1988, Global cerebral ischemia and intracellular pH during hyperglycemia and hypoglycemia in the cat, Stroke 19:1383–1387.PubMedCrossRefGoogle Scholar
  11. Cox N. H., and Lorains, J. W., 1986, The prognostic value of blood glucose and glycosylated hemoglobin in patients with stroke, Postgrad. Med. J. 62:7–10.PubMedCrossRefGoogle Scholar
  12. Degani, H., Laughlin, M., Campbell, S., and Shulman, R. G., 1984, Kinetics of creatine kinase in heart: A 31-P NMR saturation and inversion-transfer study, Biochemistry 24:5510–5516.CrossRefGoogle Scholar
  13. Fishman, R. A., 1973, Brain edema, N. Engl. J. Med. 293:706–711.CrossRefGoogle Scholar
  14. Gadian, D. B., 1982, “Nuclear Magnetic Resonance and its Application to Living Systems,” Oxford University Press, Oxford, England.Google Scholar
  15. Gadian D. G., Radda G. K., Richard R. E., and Seeley, R J., 1979, 31-P NMR in living tissue: The road from a promising to an important tool in biology, in “Biological Applications of Magnetic Resonance” (R. G. Shulman, ed.), pp. 463–535, Academic Press, New York.Google Scholar
  16. Goldberg N. D., Passonneau, J. V., and Lowry, O. H., 1986, Effects of changes in brain metabolism on the levels of critic acid cycle intermediates, J. Biol. Chem. 241:3997–4402.Google Scholar
  17. Gordon R. E., Hanley P. E., Shaw, D., Gadian D. G., Radda G. K., Stout, P., Bore, R J., and Chan, L., 1980, Localization of metabolites in animals using 31-P topical magnetic resonance, Nature 287:736–738.PubMedCrossRefGoogle Scholar
  18. Gordon R. E., Hanley, P.E., and Shaw, D., 1982, Topical magnetic resonance, Prog. NMR Spectrosc. 15:1–47.CrossRefGoogle Scholar
  19. Hakim A. M., Pokrupa R. P., Villanueva, J., Diksic, M., Evans, A. C., Thompson, C. J., Meyer, E., Yamamoto, Y.L., and Feindel, W. H., 1987, The effect of spontaneous reperfusion on metabolic function in early human cerebral infarcts, Ann. Neurol. 21:279–289.PubMedCrossRefGoogle Scholar
  20. Hope P. L., Costello A. M., Cady E. B., Delpy, D. T., Tofts, R.S., Chu A., Hamilton, R A., Reynolds, E. O. R., and Wilkie, D. R., 1984, Cerebral energy metabolism studied with phosphorous NMR spectroscopy in normal and birth-asphyxiated infants, Lancet ii:366–370.CrossRefGoogle Scholar
  21. Horikawa, Y., Naruse, S., Tanaka, C., Kimiyoshi, H., and Nishikawa, H., 1986, Proton NMR relaxation times in ischemic brain edema, Stroke 17:1149–1151.PubMedCrossRefGoogle Scholar
  22. Jacobson, K., and Cohen, J. S., 1981, Improved technique for investigation of cell metabolism by 31-P NMR spectroscopy, Biosci. Rep. 1:141–150.PubMedCrossRefGoogle Scholar
  23. Kempski, O., Staub, F., Jansen, M., Schodel, F., and Baethmann, A., 1988, Glial swelling during extracellular acidosis in vitro, Stroke 19:386–392.Google Scholar
  24. Kogure, K., Busto, R., Schwartzman R. J., and Scheinberg, P., 1980, The dissociation of cerebral blood flow, metabolism, and function in the early stages of developing cerebral infarction, Ann. Neurol. 8:278–290.PubMedCrossRefGoogle Scholar
  25. Kraig, R. P., 1989, Interrelation of glial pH to ischemic brain edema, in “Proceedings from the 16th Princeton-Williamsburg Conference,” Stroke.Google Scholar
  26. Kraig R. P., Pulsinelli W. A., and Plum, F., 1985, Behavior of brain bicarbonate ions during complete ischemia, J. Cereb. Blood Flow Metab. 5:S227–S228.Google Scholar
  27. Kraig, R. P., Pulsinelli W. A., and Plum, F., 1986, Heterogeneous distribution of hydrogen and bicarbonate ions during complete brain ischemia, Prog. Brain Res. 63:155–156.CrossRefGoogle Scholar
  28. Kuschinsky, W., and Wahl, M., 1978, Local chemical and neurogenic regulation of cerebral vascular resistance, Physiol. Rev. 58:656–689.PubMedGoogle Scholar
  29. Kwee I. L., and Nakada, T., 1988, Phospholipid profile of the human brain: 31-P NMR spectroscopic study, Magn. Res. Med. 6:296–299.CrossRefGoogle Scholar
  30. Levine S. R., Welch, K. M. A., Bruce, R., and Smith, M. B., 1987, Brain intracellular pH “flip-flop” in human ischemic stroke identified by 31P NMR, Ann. Neurol. 22:137.Google Scholar
  31. Levine S. R., Welch, K. M. A., Dietrich, K., and Helpern, J. A., 1988a, Regional heterogeneity of brain pH and phosphate metabolism in early humans stroke, Ann. Neurol. 24:128.Google Scholar
  32. Levine S. R., Welch, K. M. A., Helpern J. A., Chopp, M., Bruce, R., Selwa, J., and Smith, M. B., 1988a, Prolonged deterioration of ischemic brain energy metabolism and acidosis association with hyperglycemia. Human cerebral infarction studied by serial 31-P NMR spectroscopy, Ann. Neurol. 23:416–418.PubMedCrossRefGoogle Scholar
  33. Lowry O. H., and Passonneau, J. V., 1964, The relationship between substrates and enzymes of glycolysis in brain, J. Biol. Chem. 239:31–42.PubMedGoogle Scholar
  34. Lund-Anderson, H., 1979, Transport of glucose from blood to brain, Physiol. Rev. 59:305–352.Google Scholar
  35. Mabe, H., Blomqvist, P., and Siesjö, B. K., 1983, Intracellular pH in the brain following transient ischemia, J. Cereb. Blood Flow Metab. 3:109–114.PubMedCrossRefGoogle Scholar
  36. Mayevsky, A., Nioka, S., Subramanian V. H., and Chance, B., 1988, Brain oxidative metabolism of the newborn dog—correlation between 31-P NMR spectroscopy and pyridine nucleotide redox state, J. Cereb. Blood Flow Metab. 8:201–207.PubMedCrossRefGoogle Scholar
  37. McMillan, V., and Siesjö, B. K., 1983, The effect of phenobarbital anesthesia upon some organic phosphates, glycolytic metabolites and citric acid cycle-associated intermediates of the rat brain, J. Neurochem. 20:1669–1681.CrossRefGoogle Scholar
  38. Melamed, E., 1976. Reactive hyperglycemia in patients with acute stroke, J. Neurol. Sci. 29:267–275.PubMedCrossRefGoogle Scholar
  39. Michenfelder J. D., and Theye, R. A., 1979, The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation, Anesthesiology 33:430.CrossRefGoogle Scholar
  40. Mitchell, P., 1961, Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism, Nature 191:144–148.PubMedCrossRefGoogle Scholar
  41. Mohr, J. P., Rubenstein, L. V., Tatemichi T. K., Nichols, E T., Caplan L. R., Hier D. B., Kase C. S., Price T. R., and Wolf, P. A., 1985, Blood sugar and acute stroke: the NINCDS pilot stroke data bank, Stroke 16:143.Google Scholar
  42. Moon R. G., and Richards, J. H., 1973, Determination of intracellular pH by 31-P magnetic resonance, J. Biol. Chem. 248:7276–7278.PubMedGoogle Scholar
  43. Myers R. E., and Yamaguchi, M., 1976, Tissue lactate accumulation as cause of cerebral edema, Neurosci. Abstr. 2:1042.Google Scholar
  44. Nedergaard, M., and Diemer, N. H., 1989, Hypoglycemia reduces infarct size in experimental focal cerebral ischemia, in “Proceedings from the 16th Princeton-Williamsburg Conference,” Stroke.Google Scholar
  45. Nencini, P., Kushner, M., Reivich, M., Chawluk J. B., Zimmerman, M., Rango, M., Jamieson D. G., and Alavi, A., 1988, Hyperglycemia and metabolism in cerebral infarction, Neurology 38:368.Google Scholar
  46. Nunnally R. L., and Hollis, D. P., 1970, Adenosine triphosphate compartmentation in living hearts: A phosphorous NMR saturation transfer study, Biochemistry 18:3642–3646.CrossRefGoogle Scholar
  47. Paschen, W., Sato, W., Pawlik, G., Umbach, C., and Heiss, W.-D., 1985, Neurologic deficit, blood flow and biochemical sequelae of reversible focal cerebral ischemia in cats, J. Neurol. Sci. 68: 119–134.PubMedCrossRefGoogle Scholar
  48. Pelligrino, D., and Siesjö, B. K., 1981, Regulation of extra-and intracellular pH in the brain in severe hypoglycemia, J. Cereb. Blood Flow Metab. 1:85–96.PubMedCrossRefGoogle Scholar
  49. Petito, C. K., 1987, Post ischemic transformation of perineuronal glial cells, in “Cerebrovascular Diseases” (M. E. Raichle and W. J. Powers, eds.), pp. 103–106, Raven Press, New York.Google Scholar
  50. Petroff, O. A. C., Prichard J. W., Behar K. L., Alger J. R., den Hollender J. A., and Shullman, R. G., 1985, Cerebral intracellular pH by 31-P NMR spectroscopy, Neurology 35:781–788.PubMedCrossRefGoogle Scholar
  51. Pettegrew, J. W., Kopp S. J., Dadok, J., Minshew N. J., Feliksik J. M., Glonek, T., and Cohen, M. M., 1986, Chemical characterization of a prominent phosphomonoester resonance from mammalian brain. 31-P and 1-H NMR analysis at 4.7 and 14.1 Tesla, J. Magn. Reson. 67:443–450.Google Scholar
  52. Pettegrew J. W., Kopp S. J., Minshew N. J., Glonek, T., Feliksik, B. C., Tow, J. P., and Cohen, M. M., 1987, 31P nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: Preliminary observations, J. Neuropathol. Exp. Neurol. 46:419–430.PubMedCrossRefGoogle Scholar
  53. Plum, F., Cooper, A. J. L., Kraig, R. P., Petito C. K., and Pulsinelli, W A., 1985, Glial cells: The silent partners of the working brain, J. Cereb. Blood Flow Metab. 5:S1–S4.CrossRefGoogle Scholar
  54. Prichard J. W., Alger J. R., Behar K. L., Petroff, O. A. C., and Shulman, R. G., 1983, Cerebral metabolic studies in vivo by 31-P NMR, Proc. Natl. Acad. Sci. USA 80:2748–2751.PubMedCrossRefGoogle Scholar
  55. Pulsinelli, W., Sigsbee, B., Waldman, S., Rawlinson, D., Scherer, P., and Plum, G., 1980, Experimental hyperglycemia and diabetes mellitus worsen stroke outcome, Ann. Neurol. 8:91.Google Scholar
  56. Radda, G. K., 1986, The use of NMR spectroscopy for the understanding of disease, Science 233: 640–645.PubMedCrossRefGoogle Scholar
  57. Roberts, J. K. M., Wade-Jardetzky, N., and Jardetzky, O., 1981, Intracellular pH measurements by 31-P NMR. Influence of factors other than pH on 31-P chemical shifts, Biochemistry 20:5389–5394.PubMedCrossRefGoogle Scholar
  58. Shoubridge E. A., Briggs R. W., and Radda, G. K., 1982, 31-P NMR saturation transfer measurements of the steady state rates of creatine kinase and ATP synthetase in the rat brain, FEBS Lett. 140:288–292.CrossRefGoogle Scholar
  59. Siesjö, B. K., 1978, “Brain Energy and Metabolism,” pp. 327–329, John Wiley & Sons, New York.Google Scholar
  60. Siesjö, B. K., 1981, Cell damage in the brain: A speculative synthesis, J. Cereb. Blood Flow Metab. 1: 155–185.PubMedCrossRefGoogle Scholar
  61. Siesjö, B. K., 1985a, Acidosis and brain damage: Possible molecular mechanisms, J. Cereb. Blood Flow Metab. 5:S225–S226.Google Scholar
  62. Siesjö, B. K., 1985b, Acid-base homeostasis in the brain: Physiology, chemistry, and neurochemical pathology, Prog. Brain Res. 63:121–154.PubMedCrossRefGoogle Scholar
  63. Siesjö, B. K., Smith M. L., and Warner, D. S., 1987, Acidosis and ischemic brain damage, in “Cerebrovascular Disease” (M. E. Raichle and W. J. Powers, eds.), pp. 83–95, Raven Press, New York.Google Scholar
  64. Syrota, A., Samson, Y., Boullais, C., Wajnberg, P., Loc’h, C., Crouzel, C., Maziere, B., Soussaline, F., and Baron, J. C., 1985, Tomographic mapping of brain intracellular pH and extracellular water space in stroke patients, J. Cereb. Blood Flow Metab. 5:358–368.PubMedCrossRefGoogle Scholar
  65. Wanke, E., Carbone, E., and Testa, R L., 1979, K+ conductance modified by a titratable group accessible to protons from the intracellular side of the squid axon membrane, Biophys. J. 26: 319–324.PubMedCrossRefGoogle Scholar
  66. Welch, K. M. A., and Barkley, G. L., 1986, Biochemistry and pharmacology of cerebral ischemia, in “Stroke, Pathophysiology, Diagnosis and Management” (J. M. Barnett, J. R. Mohr, B. M. Stein, and E. M. Yatsu, eds), pp. 75–90, Churchill-Livingstone, New York.Google Scholar
  67. Welch, K. M. A., Helpern J. A., Robertson, W M., and Ewing, J. R., 1985, 31P topical magnetic resonance measurement of high energy phosphates in normal and infarcted brain, Stroke 16:151.Google Scholar
  68. Welsh, E A., Ginsberg M. D., and Rieder, W., 1980, Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat, Stroke 11:355–363.PubMedCrossRefGoogle Scholar
  69. Yoshida, S., Busto, R., Martinez, E., and Ginsberg, M. D., 1985, Regional energy metabolism after complete versus incomplete cerebral ischemia in the absence of severe lactic acidosis, J. Cereb. Blood Flow Metab. 5:490–501.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • K. M. A. Welch
    • 1
  • Steven R. Levine
    • 1
  • G. B. Martin
    • 2
  • J. A. Helpern
    • 1
    • 3
  1. 1.Center for Stroke Research, Department of NeurologyHenry Ford Hospital and Health Science CenterDetroitUSA
  2. 2.Department of Emergency MedicineHenry Ford Hospital and Health Science CenterDetroitUSA
  3. 3.Department of PhysicsOakland UniversityRochesterUSA

Personalised recommendations