The Role of Retinoic Acid and Cellular Retinoic Acid-Binding Protein in the Regenerating Amphibian Limb

  • Malcolm Maden
  • Nick Waterson
  • Dennis Summerbell
  • Jean Maignon
  • Michel Darmon
  • Braham Shroot
Part of the NATO ASI Series book series (NSSA, volume 205)

Abstract

We describe here two aspects of our work on retinoic acid (RA) and pattern formation in the regenerating limb. The first concerns the presence of endogenous RA in the regenerating limb and the second concerns experiments on the role of cellular retinoic acid-binding protein (CRABP) in the process of pattern respecification.

Keywords

Sucrose HPLC Ethyl Fractionation Cytosol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, J. S., and Siu, C-H., 1988, Purification and partial characterisation of a novel binding protein for retinoic acid from neonatal rat. J. Biol. Chem., 263:9326.PubMedGoogle Scholar
  2. Darmon, M., Rocher, M., Cavey, M-T., Martin, B., Rabilloud, T., Delecluse, C., and Shroot, B., 1988, Biological activity of retinoids correlates with affinity for nuclear receptors but not for cytosolic binding protein. Skin Pharmacol., 1:161.PubMedCrossRefGoogle Scholar
  3. Fell, H. B., and Mellanby, E., 1952, The effect of hypervitaminosis A on embryonic limb-bones culrivated in vitro. J. Physiol., 116:320.PubMedGoogle Scholar
  4. Giguere, V., Lyn, S., Yip, P., Siu, C-H., and Amin, S., 1990, Molecular cloning of cDNA encoding a second cellular retinoic acid-binding protein. Proc. Natl. Acad. Sci. USA, 87:6233.PubMedCrossRefGoogle Scholar
  5. Keeble, S., and Maden, M., 1986, Retinoic acid-binding protein in the axolotl: Distribution in mature tissues and time of appearance during limb regeneration. Den. Biol.,117:435.CrossRefGoogle Scholar
  6. Keeble, S., and Maden, M., 1989, The relationship among retinoid structure, affinity for retinoic acid-binding protein, and ability to respecify pattern in the regenerating axolotl limb. Dev. Biol., 132:26.PubMedCrossRefGoogle Scholar
  7. Kim, W-S., and Stocum, D.L., 1986a, Retinoic acid modifies positional memory in the anteroposterior axis of regenerating limbs. Dev. Biol., 114:170.CrossRefGoogle Scholar
  8. Kim, W-S., and Stocum, D.L., 1986b, Effects of retinoic acid on regenerating normal and double half limbs of axolotls. Histological studies. Roux’s Arch. Dev. Biol., 195:243.CrossRefGoogle Scholar
  9. Kistler, A., 1978, Inhibition of vitamin A action in rat bone cultures by inhibitors of RNA and protein synthesis. Experientia, 34:1159.PubMedCrossRefGoogle Scholar
  10. Kistler, A., 1982, Retinoic acid-indiced cartilage resorption. Induction of specific changes in protein synthesis and inhibition by tunicamycin. Differentiation, 21:168.PubMedCrossRefGoogle Scholar
  11. Kitamoto, T., Momoi, T., and Momoi, M., 1988, The presence of a novel cellular retinoic acid-binding protein in chick embryos: purification and partial characterisation. Biochem. Biophys. Res. Comm., 157:1302.PubMedCrossRefGoogle Scholar
  12. Ludolph, D. C., Cameron, J. A., and Stocum, D. L., 1990, The effect of retinoic acid on positional memory in the dorsoventral axis of regenerating axolotl limbs. Dev. Biol., 140:41.PubMedCrossRefGoogle Scholar
  13. Maden, M., 1982, Vitamin A and pattern formation in the regenerating limb. Nature, 295:672.PubMedCrossRefGoogle Scholar
  14. Maden, M., 1983, The effect of vitamin A on limb regeneration in Rana temporaria. Dev. Biol., 98:409.PubMedCrossRefGoogle Scholar
  15. Maden, M., and Summerbell, D., 1986, Retinoic acid-binding protein in the chick limb bud: Identification at various developmental stages and binding affinities of various retinoids. J. Embryol. Exp. Morph., 97:239.PubMedGoogle Scholar
  16. Maden, M., and Summerbell, D., 1989, Biochemical pathways involved in the respecification of pattern by retinoic acid. NATO Advanced Research Workshop on Recent Trends in Regeneration Research, V. Kiortsis, S. Koussoulakos, and H. Wallace, eds., pp 313, Plenum Press, New YorkCrossRefGoogle Scholar
  17. Maden, M.,Keeble, S., and Cox, R. A., 1985, The characteristics of local application of retinoic acid to the regenerating axolotl limb. Roux’s Arch. Dev. Biol., 194:228.Google Scholar
  18. Maden, M., Ong, D. E., Summerbell, D., and Chytil, F., 1988, Spatial distribution of cellular protein binding to retinoic acid in the chick limb bud. Nature, 335:733.PubMedCrossRefGoogle Scholar
  19. Mangelsdorf, D. J., Ong, E. S., Dyck, J. A., and Evans, R. M., 1990, Nuclear receptor that identifies a novel retinoic acid response pathway. Nature, 345:224.PubMedCrossRefGoogle Scholar
  20. Scadding, S. R., 1988, Actinomycin D, cyclohexamide, and tunicamycin inhibit vitamin A indiced proximodistal duplication during limb regeneration in the axolotl Ambystoma mexicanum. Can. J. Zool., 66:879.CrossRefGoogle Scholar
  21. Smith, S. M., Pang, K., Sundin, O., Wedden, S. E., Thaller, C., and Eichele, G., 1989, Molecular approaches to vertebrate limb morphogenesis. Development (suppl.) 121.Google Scholar
  22. Thaller, C., and Eichele, G., 1987, Identification and spatial distribution of retinoids in the developing chick limb bud. Nature, 336:775.Google Scholar
  23. Thaller, C., and Eichele, G., 1990, Isolation of 3,4- didehydroretinoic acid, a novel morphogenetic signal in the chick wing bud. Nature, 345:815.PubMedCrossRefGoogle Scholar
  24. Tickle, C., Summerbell, D., and Wolpert, L., 1975, Positional signaling and specification of digits in chick limb morphogenesis. Nature, 254:199.PubMedCrossRefGoogle Scholar
  25. Zelent, A., Krust, A., Petkovich, M., Kastner, P., and Chambon, P., 1989, Cloning of murine a and ß retinoic acid receptors and a novel receptor y predeominantly expressed in skin. Nature, 339:714.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Malcolm Maden
    • 1
  • Nick Waterson
    • 2
  • Dennis Summerbell
    • 2
  • Jean Maignon
    • 3
  • Michel Darmon
    • 4
  • Braham Shroot
    • 4
  1. 1.Anatomy & Human Biology GroupKings CollegeLondonUK
  2. 2.Division of Physical Biochemistry National Institute for Medical ResearchLondonUK
  3. 3.Laboratoires de Recherche L’OrealAulnaySous-BoisFrance
  4. 4.Centre International de Recherches Dermatologiques GaldermaSophia AntipolisValbonneFrance

Personalised recommendations