Advertisement

The Induction of the Heat Shock Response: Activation and Expression of Chimaeric Heat Shock Genes in Transgenic Plants

  • Fritz Schöffl
  • Mechthild Rieping
  • Klaus Severin
Part of the NATO ASI Series book series (NSSA, volume 212)

Abstract

The heat shock (hs) response is a highly conserved, almost universal genetic system in living organisms. This response appears to have a protective function for many types of cells and tissues which have been exposed to heat stress, but also certain other chemical and physico-chemical stressors have the capacity to elicit the hs response (for reviews see Neumann et al., 1989; Lindquist and Craig, 1988; Schöffl et al., 1988). Hence, stressed cells seem to seek protection from the detrimental effects of environmental stress, at least to some extent, by the hs response. In physical terms, the stressor is an external force causing an internal strain. The adoption of these terms to biological systems has changed the meaning in a way that the term stress is used for “any environmental factor potentially unfavourable to living organism” and “strain is any physical or chemical change produced by a stress” (Levitt, 1980). The term hs response is commonly used for the reprogramming of cellular activities which is rapidly induced by heat stress. One important feature of this response is the cte novo synthesis of a number of hs proteins (hsps). Following severe but sublethal heat stress, cells are able to recover and they may even tolerate a subsequent, higher dosage of the stressor.

Keywords

Heat Shock Heat Shock Response Heat Shock Factor Heat Shock Transcription Factor Heat Shock Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amin, J., Anathan, J., and Voellmy, R., 1988, Key features of heat shock regulatory elements, Mol. Cell., 8: 3761.Google Scholar
  2. Baumann, G., Raschke, E., Bevan, M., and Schöffl, F., 1987, Functional analysis of sequences required for transcriptional activation of a soybean heat shock gene in transgenic tobacco plants, EMBO J., 6: 1161.PubMedGoogle Scholar
  3. Bienz, M., 1986, A CCAAT box confers cell-type-specific regulation on the Xenopus hsp70 gene in oocytes, Cell, 46: 1037.PubMedCrossRefGoogle Scholar
  4. Bienz, M., and Pelham, H. R. B., 1986, Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter, Cell, 45: 753.PubMedCrossRefGoogle Scholar
  5. Czarnecka, E., Key, J. L., and Gurley, W. B., 1989, Regulatory domains of the Gmhspl7.5-E heat shock gene promoter of soybean: a mutational analysis, Mol. Cell. Biol., 9: 3457.PubMedGoogle Scholar
  6. Findly, R. C., Alavi, H., and Platt, T., 1988, Isolation of mutations that act in trans to alter expression from a yeast hsp70 promoter, Mol. Cell. Biol., 8: 3423.PubMedGoogle Scholar
  7. Goldenberg, C. J., Luo, Y., Fenna, M., Baler, R., Weinmann, R., and Voellmy, R., 1988, Purified human factor acivates heat-shock promoter in a HeLa cell-free transcription system, J. Biol. Chem., 263: 19734.PubMedGoogle Scholar
  8. Green, J. M., and Kingston, R. E., 1990, TATA-dependent and TATA-independent function of the basal and heat shock elements of a human hsp70 promoter, Mol. Cell. Biol., 10: 1319.Google Scholar
  9. Jefferson, R. A., 1987, Assaying chimeric genes in plants: the GUS gene fusion system, Plant Mol. Biol. Rep., 5: 387.CrossRefGoogle Scholar
  10. Kingston, R. E., Schütz, T. J., and Larin, Z., 1987, Heat-inducible human factor that binds to a human hsp70 promoter, Mol. Cell. Biol., 7: 1530.PubMedGoogle Scholar
  11. Larson, J. S., Shuetz, T. J., and Kingston, R. E., 1988, Activation in vitro of sequence-specific DNA binding by a human regulatory factor, Nature, 355: 372.CrossRefGoogle Scholar
  12. Levitt, J., 1980, Responses of plants to environmental stresses, Vol. I, Academic Press, New York.Google Scholar
  13. Lindquist, S., and Craig, E. A., 1988, The heat shock proteins, Annu. Rev. Genet., 22: 631.PubMedCrossRefGoogle Scholar
  14. Morgan, W. D., Williams, G. T., Morimoto, R. J., Greene, J., Kingston, R. E., and Tjian, R., 1987, Two transcriptional activators, CCAAT-box-binding transcription factor and heat shock transcription factor, interact with a human hsp70 gene promoter, Mol. Cell. Biol., 7: 1129.PubMedGoogle Scholar
  15. Neumann, D., Nover, L., Parthier, B., Rieger, R., Scharf, K.-D., Wollgiehn, R. and zur Nieden, U., 1989, Heat shock and other stress response systems of plants, Biol. Zent.bl., 108: 1.Google Scholar
  16. Nover, L., 1990, Heat shock response, CRC Press, Boca Raton.Google Scholar
  17. Nover, L., Scharf, K.-D., and Neumann, D., 1989, Cytoplasmic heat shock granules are formed from precursor particles and contain a specific set of mRNAs, Mol. Cell. Biol. 9: 1298.PubMedGoogle Scholar
  18. Parker-Thornburg, J., Bonner, J. J., 1987, Mutations that induce the heat shock response of Drosophila, Cell, 51: 763.PubMedCrossRefGoogle Scholar
  19. Perisic, O., Xiao, H., and Lis, J. T., 1989, Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit, Cell, 59: 797.PubMedCrossRefGoogle Scholar
  20. Petersen, R., and Lindquist, S., 1988, The Drosophila hsp70 message is rapidly degraded at normal temperatures and stabilized by heat shock, Gene, 72: 161.PubMedCrossRefGoogle Scholar
  21. Raibaud, O., 1990, Direct repeats in H5F binding sites, Nature, 344: 204.PubMedCrossRefGoogle Scholar
  22. Schöffl, F., 1988, Genetic engineering strategies for manipulation of the heat shock response, Plant Cell Envir., 11: 339.CrossRefGoogle Scholar
  23. Schöffl, F., and Baumann, G., 1985, Thermo-induced transcripts of a soybean heat shock gene after transfer into sunflower using a Ti plasmid vector, EMBO J., 4: 1119.PubMedGoogle Scholar
  24. Schöffl, F., Baumann, G., and Raschke, E., 1988, The expression of heat shock genes. A model for environmental stress response, in: “Plant Gene Research — Temporal and Spacial Regulation of Plant Genes, ” Verma, D. P. S., Goldberg, R. B., eds., Springer Verlag, Wien, New York.Google Scholar
  25. Schöffl, F., Rieping, M., Baumann, G., Bevan, M. W., and Angermüller, S., 1989, The function of plant heat shock promoter elements in the regulated expression of chimaeric genes in transgenic tobacco, Mol. Gen. Genet., 217: 246.PubMedCrossRefGoogle Scholar
  26. Schöffl, F., Rieping, M., and Raschke, E., 1990, Functional analysis of sequences regulating the expression of heat shock genes in transgenic plants, in: “Genetic Engineering of Crop Plants, ” Lycett, G. W., Grierson, D., eds., Butterworth Ltd., London.Google Scholar
  27. Schöffl, F., Rossol, I., and Angermüller, S., 1987, Regulation of the transcription of heat shock genes in nuclei from soybean (Glycine max) seedlings, Plant Cell Envir., 10: 113.Google Scholar
  28. Severin, K., Kliem, M., and Schöffl, F., 1989, Binding of nuclear proteins to the promoter upstream regions of soybean heat shock genes, in: “Proceedings of the Braunschweig Symposium on Applied Plant Molecular Biology, ” Galling, G., Technische Universität Braunschweig.Google Scholar
  29. Severin, K., and Schöffl, F., 1990, Heat-inducible hygromycin resistance in transgenic tobacco, (submitted).Google Scholar
  30. Sorger, P. K., Lewis, M. J., and Pelham, H. R. B., 1987, Heat shock factor is regulated differently in yeast and HeLa cells, Nature, 329: 81.PubMedCrossRefGoogle Scholar
  31. Sorger, P. K., and Nelson, H. C. M., 1989, Trimerization of a yeast transcriptional activator via a coiled-coil motif, Cell, 59: 807.PubMedCrossRefGoogle Scholar
  32. Sorger, P. K., and Pelham, H. R. B., 1988, Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation, Cell, 54: 855.PubMedCrossRefGoogle Scholar
  33. Strittmatter, G., and Chua, N.-H., 1987, Artificial combinatin of two cis-regulatory elements generates a unique pattern of expression in transgenic plants, Proc. Natl. Acad. Sci. USA, 84: 8986.PubMedCrossRefGoogle Scholar
  34. Theodorakis, N. G., and Morimoto, R. I., 1987, Posttranscriptional regulation of hsp70 expression in human cells: effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability, Mol. Cell. Biol., 7: 4357.PubMedGoogle Scholar
  35. Van den Elzen, P., Townsend, J., Lee, K. Y., Bedbrook, J. R., 1985, A chimaeric hygromycin resistance gene as a selectable marker in plant cells, Plant Mol. Biol., 5: 299.CrossRefGoogle Scholar
  36. Wiederrecht, G., Seto, D., and Parker, C. S., 1988, Isolation of the gene encoding the S. cerevisiae heat shock transcription factor, Cell, 54: 841.PubMedCrossRefGoogle Scholar
  37. Wu, B. J., Kingston, R. E., Morimoto, R. J., 1986, Human hsp70 promoter contains at least two distinct regulatory domains, Proc. Natl. Acad. Sci. USA, 83: 629.PubMedCrossRefGoogle Scholar
  38. Wu, C., Wilson, S., Walker, B., Dawid, I., Paisley, T., Zimarino, V., and Ueda, H., 1987, Purification and properties of Drosophila heat shock activator protein, Science, 238: 1247.PubMedCrossRefGoogle Scholar
  39. Xiao, H., and Lis, J. T., 1988, Germline transformation used to define key features of heat shock response elements, Science, 239: 1139.PubMedCrossRefGoogle Scholar
  40. Zimarino, V., and Wu, C., 1987, Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis, Nature, 327: 727.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Fritz Schöffl
    • 1
    • 2
  • Mechthild Rieping
    • 1
  • Klaus Severin
    • 1
  1. 1.Universität Bielefeld Biologie (Genetik)BielefeldGermany
  2. 2.Universität Tübingen Biologie (Allgemeine Genetik)TübingenGermany

Personalised recommendations