Plant Molecular Biology 2 pp 449-459

Part of the NATO ASI Series book series (NSSA, volume 212)

Chlorophyll Biosynthesis

  • Diter von Wettstein

Abstract

Chlorophyll is bound to proteins of the photosynthetic membranes. It harvests sunlight and carries out the first reactions in the conversion of light energy to chemical energy, which is conserved in NADPH2 and ATP. The chemical formula of chlorophyll a is reproduced in Fig. 1. Four pyrrole rings (I-IV) are bound into a tetrapyrrole ring with a magnesium atom in the center. Ring IV is esterified with a higher alcohol, phytol. For light harvesting higher plants use an additional form of chlorophyll, chlorophyll b which contains in position 3 a formyl group (CHO) instead of a methyl group. The ring system with its characteristic conjugated double bonds is assembled in the chloroplast from 8 molecules of 5-aminolevulinic acid (Fig. 2) which contains 5 carbon atoms and as functional groups besides the carboxyl group an amino and a ketogroup. The following experiments have shown that 5-aminolevulinate is the precursor of chlorophyll: If seeds of higher plants are germinated in the dark, the seedlings have yellow leaves due to lack of chlorophyll. If these are placed in a solution of 5-aminolevulinate in darkness they will green in the course of a few hours due to the accumulation of protochlorophyllide, a late precursor of chlorophyll which in higher plants requires light for conversion into chlorophyll. If radioactively labeled 5-aminolevulinate is used with detached leaves or isolated plastids, the label is found in protochlorophyllide. This experiment reveals that all the enzymes building protochlorophyllide from 5-aminolevulinate are present in the plastid of dark-grown leaves and that it is the synthesis of 5-aminolevulinate which is limiting in the dark.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.G. Kannangara, Biochemistry and molecular biology of chlorophyll synthesis, in: Cell culture and somatic cell genetics of plants. Vol. 7, The Molecular Biology of Plastids and Mitochondria, L. Bogorad and I. K. Vasil, eds., Academic Press, New York (1990).Google Scholar
  2. 2.
    W. Rüdiger and S. Schoch, Chlorophylls, in: Plant Pigments, T. W. Goodwin, ed., Academic press, New York (1988).Google Scholar
  3. 3.
    G. J. Hart and A. R. Battersby, Purification and properties of uroporphyrinogen III synthase (co-synthetase) from Euglena gradlis. Biochem. J. 232, 151 (1985).PubMedGoogle Scholar
  4. 4.
    A.R. Battersby, Biosynthesis of the pigments of life. J. Natural Products 51, 629 (1988).CrossRefGoogle Scholar
  5. 5.
    W. Liedgens, C. Lutz and H.A.W. Schneider, Molecular properties of 5-aminolevulinic acid dehydrogenase from Spinacia oleracea. Eur. J. Biochem. 135, 75 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    E.K. Jaffe and G.D. Markham, 13C NMR studies of porphobilinogen synthase: observation of intermediates bound to a 280, 000 Dalton protein. Biochemistry 26, 4258 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    Y. Echelard, J. Dymetryszyn, M. Drolet and A. Sasarmann, Nucleotide sequence of the hem B gene of E.coli K12. Mol. Gen. Genet. 214, 503 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    J.G. Wetmur, D.F. Bishop, C. Cantelmo and R.J. Desnick, Human δ-aminolevulinate dehydratase: Nucleotide sequence of a full length cDNA clone. Proc. Nat. Acad. Sci. USA 33, 7703 (1986).CrossRefGoogle Scholar
  9. 9.
    R.C. Davis and A. Neuberger, Polypyrroles formed from porphobilinogen and amines by uroporphyrinogen synthetase of Rhodopseudomonas spheroides, Biochem. J. 133, 471 (1973).Google Scholar
  10. 10.
    Y. Shioi, M. Nagamine, M. Kuraki and T. Sassa, Purification by affinity chromatography and properties of uroporphyrinogen I synthetase from Chlorella vulgaris. Biochim. Biophys Acta 616, 303 (1980).Google Scholar
  11. 11.
    D.C. Williams, G.S. Morgan, E. McDonald and A.R. Battersby, Purification of porphobilinogen deaminase from Euglena gracilis and studies of its kinetics, Biochem. J. 193, 301 (1981).PubMedGoogle Scholar
  12. 12.
    C.G. Kannangara, S.P. Gough and C. Girnth, δ-Aminolevulinate synthesis in greening barley. 2. Purification of enzymes, in: Vth Intern. Congr. Photosynthesis. V. Chloroplast Development, G. Akoyunoglou, ed., Balaban Int. Science Services, Philadelphia, Pa. (1981).Google Scholar
  13. 13.
    A.D. Miller, G.J. Hart, L.C. Packman and A.R. Battersby, Evidence that the pyrromethane cofactor of hydroxymethylbilane synthase (porphobilinogen deaminase) is bound to the protein through the sulphur atom of cystein-242, Biochem. J. 254, 915 (1988).PubMedGoogle Scholar
  14. 14.
    P.M. Jordan, M.J. Warren, H.J. Williams, N.J. Stolowich, C.A. Roessner, S.K. Grant and A.I. Scott, Identification of a cysteine residue as the binding site for the dipyrromethane cofactor at the active site of Escherichia coli porphobilinogen deaminase. FEBS Letters 235, 189 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    A.I. Scott, K.R. Clemens, N.J. Stolowich, P.J. Santander, M.D. Gonzalez and C.A. Roessner, Reconstitution of apo-porphobilinogen deaminase: Structural changes induced by cofactor binding, FEBS Letters 242, 319 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    S.D. Thomas and P.M. Jordan, Nucleotide sequence of the hem C locus encoding porphobilinogen deaminase of Escherichia coli K12, Nucleic Acids Res. 14, 6215 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    A.L. Sharif, A.G. Smith and C. Abell, Isolation and characterisation of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. The chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesized with a very long transit peptide in Euglena. Eur. J. Biochem. 184, 353 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    A. Sasarman, A. Nepveu, Y. Echelard, J. Dymetryszyn, M. Drolet and C. Goyer, Molecular cloning and sequencing of the hem D gene of Escherichia coli K 12 and preliminary data on the uro operon, J. Bacteriol. 169, 4257 (1987).PubMedGoogle Scholar
  19. 19.
    P.-H. Romeo, A. Dubart, B. Grandchamp, H. de Verneuil, J. Rosa, Y. Nordmann and M. Goosens, Isolation and identification of a cDNA clone coding for rat uroporphyrinogen decarboxylase. Proc. Nat. Acad. Sci. USA 81, 3346 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    P.-H. Romeo, N. Raich, A. Dubart, D. Beaupain, M. Pryor, J. Kushner, M. Cohen-Solal and M. Goosens, Molecular cloning and nucleotide sequence of a complete human uroporphyrinogen decarboxylase cDNA. J. Biol. Chem. 261, 9825 (1986).PubMedGoogle Scholar
  21. 21.
    M. Zagorec, J.-M. Buhler, I. Treich, T. Keng, L. Guarente and R. Labbe-Bios, Isolation, sequence and regulation by oxygen of the yeast Hem B gene coding for coproporphyrinogen oxidase, J. Biol. Chem. 262, 9718 (1988).Google Scholar
  22. 22.
    R. Schulz, K. Steinmüller, M. Klaas, C. Forreiter, S. Rasmussen, C. Hiller and K. Apel, Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli, Molec. Gen. Genet 217, 355 (1989).CrossRefGoogle Scholar
  23. 23.
    S. Gough, Defective synthesis of porphyrins in barley plastids caused by mutation in nuclear genes. Biochim. Biophys. Acta 286, 36 (1972).PubMedCrossRefGoogle Scholar
  24. 24.
    W.-Y. Wang, J.E. Boynton, N.W. Gillham and S.P. Gough, Genetic control of chlorophyll biosynthesis in Chlamydomonas: Analysis of a mutant affecting synthesis of δ-aminolevulinic acid, Cell 6, 75 (1975).PubMedCrossRefGoogle Scholar
  25. 25.
    D. von Wettstein, K.W. Henningsen, J.E. Boynton, C.G. Kannangara and O.F. Nielsen, The genic control of chloroplast development in barley, in: Autonomy and biogenesis of mitochondria and chloroplasts, N.K. Boardman, A.W. Linnane and R.M. Smillie, eds., North Holland, Amsterdam (1971).Google Scholar
  26. 26.
    P. Mascia, An analysis of precursors accumulated by several chlorophyll biosynthetic mutants of maize. Mol. Gen. Genet. 161, 237 (1978).CrossRefGoogle Scholar
  27. 27.
    C.G. Kannangara, S.P. Gough, P. Bryuant, J.K. Hoober, A. Kahn and D. von Wettstein, tRNAGlu as a cofactor in δ-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis. Trends in Biochem. Sci. 13, 139 (1988).CrossRefGoogle Scholar
  28. 28.
    P.M. Jordan and D. Shemin, δ-Aminolevulinic acid synthetase, in: Enzymes, P.D. Boyer, ed., Vol. 7, Academic Press, New York (1972).Google Scholar
  29. 29.
    T. Oh-hama, H. Seto and S. Miyachi, 13C-NMR evidence of bacteriochlorophyll a formation by the C5 pathway in Chromatium, Arch. Biochem. Biophys. 246, 192 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    K.M. Smith and M.S. Huster, Bacteriochlorophyll-c formation via glutamate C-5 pathway in Chlorobium bacteria. J. Chem. Soc. Chem. Commun. 14 (1987).Google Scholar
  31. 31.
    D. von Wettstein, A. Kahn, O.F. Nielsen and S. Gough; Genetic regulation of chlorophyll synthesis analysed with mutants in barley, Science 184, 800 (1974).PubMedCrossRefGoogle Scholar
  32. 32.
    C.G. Kannangara, S.P. Gough and D. von Wettstein, The biosynthesis of δ-aminolevulinate and chlorophyll and its genetic regulation, in: Chloroplast Development, G. Akoyunoglou et al., eds., Elsevier/North-Holland Biomédical Press (1978).Google Scholar
  33. 33.
    S.P. Gough and C.G. Kannangara, Biosynthesis of δ-aminolevulinate in greening barley III. The formation of δ-aminolevulinate in tigrina mutants of barley. Carlsberg Res. Commun. 44, 403 (1979).CrossRefGoogle Scholar
  34. 34.
    S.I. Beale, S.P. Gough and S. Granick, Biosynthesis of δ-aminolevulinic acid from the intact skeleton of glutamic acid in greening barley. Proc. Nat. Acad. Sci. US 72, 2719 (1975).CrossRefGoogle Scholar
  35. 35.
    E. Meiler, S. Belkin and E. Harel, The biosynthesis of δ-aminolevulinic acid in greening maize leaves, Phytochemistry 14, 2399 (1975).CrossRefGoogle Scholar
  36. 36.
    S.P. Gough and C.G. Kannangara, Synthesis of δ-aminolevulinic acid by isolated plastids, Carlsberg Res. Commun. 41, 183 (1976).CrossRefGoogle Scholar
  37. 37.
    C.G. Kannangara and S.P. Gough, Synthesis of δ-aminolevulinic acid and chlorophyll by isolated chloroplasts, Carlsberg Res. Commun. 42, 441 (1977).CrossRefGoogle Scholar
  38. 38.
    S.P. Gough and C.G. Kannangara, Synthesis of δ-aminolevulinate by a chloroplast stroma preparation from greening barley leaves, Carlsberg Res. Commun. 42, 459 (1977).CrossRefGoogle Scholar
  39. 39.
    C.G. Kannangara and S.P. Gough, Biosynthesis of δ-aminolevulinate in greening barley leaves: glutamate 1-semialdehyde aminotransferase, Carlsberg Res. Commun. 43, 185 (1978).CrossRefGoogle Scholar
  40. 40.
    W.-Y. Wang, S.P. Gough and C.G. Kannangara, Biosynthesis of δ-aminolevulinate in greening barley leaves IV. Isolation of three soluble enzymes required for the conversion of glutamate to δ-aminolevulinate, Carlsberg Res. Commun. 46, 243 (1981).CrossRefGoogle Scholar
  41. 41.
    W.-Y. Wang, D.-D. Huang, D. Stachon, S.P. Gough and C.G. Kannangara, Purification, characterization, and fractionation of the δ-aminolevulinic acid synthesizing enzymes from light-grown Chlamydomonas reinhardtii cells, Plant Physiol. 74, 569 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    G. Houen, S.P. Gough and C.G. Kannangara, δ-aminolevulinate synthesis in greening barley V. The structure of glutamate 1-semialdehyde. Carlsberg Res. Commun. 48, 567 (1983).CrossRefGoogle Scholar
  43. 43.
    C.G. Kannangara, S.P. Gough, R.P. Oliver and S.K. Rasmussen, Biosynthesis of δ-aminolevulinate in greening barley leaves VI. Activation of glutamate by ligation to RNA, Carlsberg Res. Commun. 49, 417 (1984).CrossRefGoogle Scholar
  44. 44.
    D.-D. Huang, W.-Y. Wang, S.P. Gough and C.G. Kannangara, δ-aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity, Science 225, 1482 (1984).PubMedCrossRefGoogle Scholar
  45. 45.
    C.G. Kannangara and A. Schouboe, Biosynthesis of δ-aminolevulinate in greening barley leaves. VII. Glutamate 1-semialdehyde accumulation in gabaculine treated leaves, Carlsberg Res. Commun. 50, 179 (1985).CrossRefGoogle Scholar
  46. 46.
    A. Schön, G. Krupp, S. Gough, S. Berry-Lowe, C.G. Kannangara and D. Soll, The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA, Nature 322, 281 (1986).PubMedCrossRefGoogle Scholar
  47. 47.
    P. Bruyant and C.G. Kannangara, Biosynthesis of δ-aminolevulinate in greening barley leaves. VIII. Purification and characterization of the glutamate-tRNA ligase, Carlsberg Res. Commun. 52, 99 (1987).CrossRefGoogle Scholar
  48. 48.
    S. Berry-Lowe, The chloroplast glutamate tRNA gene required for δ-aminolevulinate synthesis. Carlsberg Res. Commun. 52, 197 (1987).CrossRefGoogle Scholar
  49. 49.
    H.C. Friedmann, R.K. Thauer, S.P. Gough and C.G. Kannangara, δ-aminolevulinic acid formation in the archaebacterium Methanobacterium thermoautotrophicum requires tRNAGlu. Carlsberg Res. Commun. 52, 363 (1987).CrossRefGoogle Scholar
  50. 50.
    J.K. Hoober, A. Kahn, D.E. Ash, S. Gough and C.G. Kannangara, Biosynthesis of δ-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate 1-semialdehyde aminotransferase, Carlsberg Res. Commun. 53, 11 (1988).PubMedCrossRefGoogle Scholar
  51. 51.
    J.-M. Li, O. Brathwaite, S.D. Cosloy and C.S. Russel, 5-Aminolevulinic acid synthesis in Escherichia coli, J. Bacteriol. III, 2547 (1989).Google Scholar
  52. 52.
    Y.J. Avissar and S.I. Beale, Identification of the enzymatic basis for delta-aminolevulinic acid auxotrophy in a hem A mutant of Escherichia coli. J. Bacteriol. 171, 2919 (1989).PubMedGoogle Scholar
  53. 53.
    B. Grimm, A. Bull, K.G. Welinder, S.P. Gough and C.G. Kannangara, Purification and partial amino acid sequence of the glutamate 1-semialdehyde aminotransferase of barley and synechococcus, Carlsberg Res. Commun. 54, 67 (1989).PubMedCrossRefGoogle Scholar
  54. 54.
    S.P. Gough, C.G. Kannangara and K. Bock, A new method for the synthesis of glutamate 1-semialdehyde. Characterization of its structure in solution by NMR spectroscopy. Carlsberg Res. Commun. 54, 99 (1989).CrossRefGoogle Scholar
  55. 55.
    J.D. Houghton, S.B. Brown, S.P. Gough and C.G. Kannangara, Biosynthesis of δ-aminolevulinate in Cyanidium caldarium: Characterization of tRNAGlu, ligase, dehydrogense and glutamate 1-semialdehyde aminotransferase, Carlsberg Res. Commun. 54, 131 (1989).CrossRefGoogle Scholar
  56. 56.
    B. Grimm, Primary structure of a key enzyme in plant tetrapyrrole synthesis: Glutamate 1-semialdehyde aminotransferase, Proc. Nat. Acad. Sci. USA, in press.Google Scholar
  57. 57.
    B. Grimm, A. Bull and V. Breu, Function of a barley gene identifies the structural genes of glutamate 1-semialdehyde aminotransferase for porphyrin synthesis in E.coli and a cyanobacterium. Submitted.Google Scholar
  58. 58.
    M.W. Chen, D. Jahn, G.P. O’Neill and D. Söll, Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in δ-aminolevulinic acid formation during chlorophyll biosynthesis, J. Biol Chem. 265, 4058 (1990).PubMedGoogle Scholar
  59. 59.
    G.P. O’Neill, D.M. Peterson, A. Schön, M.-W. Chen and D. Söll, Formation of the chlorophyll precursor δ-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGlu species, J. Bacteriol. 170, 3810 (1988).Google Scholar
  60. 60.
    M.-W. Chen, D. Jahn, A. Schön, G.P. O’Neill and D. Söll, Purification and characterization of Chlamydomonas reinhardtii chloroplast glutamyl-tRNA synthetase, a natural misacylating enzyme, J. Biol. Chem. 265, 4054 (1990).PubMedGoogle Scholar
  61. 61.
    A. Schön, C.G. Kannangara, S.P. Gough and D. Söll, Protein biosynthesis in organelles requires misacylation of transfer RNA, Nature 331, 187 (1988).PubMedCrossRefGoogle Scholar
  62. 62.
    A. Schön and D. Söll, tRNA specificity of a mischarging aminoacyl tRNA synthetase. Glutamyl tRNA synthetase from barley chloroplasts, FEBS Letters 228, 241 (1988).CrossRefGoogle Scholar
  63. 63.
    M.A. Rould, J.J. Perona, D. Söll and T.A. Steitz, Structure of E.coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8 Å resolution, Science 246, 1135 (1989).PubMedCrossRefGoogle Scholar
  64. 64.
    S.A. Leong, G.S. Ditta and D.R. Helinski, Herne biosynthesis in Rhtobium. Identification of a cloned gene coding for δ-aminolevulinic acid synthetase from Rhizobium meliloti. J. Biol Chem. 257, 8724 (1982).PubMedGoogle Scholar
  65. 65.
    M.L. Guerinot and B.K. Chelm, Bacterial 6-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in soybean/Brady-rhtobium japonicum symbiosis, Proc. Natl. Acad. Sci. USA 83, 1837 (1986).PubMedCrossRefGoogle Scholar
  66. 66.
    T.-N. Tai, M.D. Moore and S. Kaplan, Cloning and characterization of the 5-aminolevulinate synthase gene(s) from Rhodobacter sphaeroides. Gene 70, 139 (1988).Google Scholar
  67. 67.
    D.S. Schoenhaut and P.J. Curtis, Nucleotide sequence of mouse 5-aminolevulinic acid synthase cDNA and expression of its gene in hepatic and erythroid tissue, Gene 48, 55 (1986).PubMedCrossRefGoogle Scholar
  68. 68.
    M. Drolet, L. Péloquin, Y. Echelard, L. Cousineau and A. Sasarman, Isolation and nucleotide sequence of the hem A gene of Escherichia coli K 12, Mol Gen. Genet. 216, 347 (1989).PubMedCrossRefGoogle Scholar
  69. 69.
    J.-M. Li, C.S. Russel and S.D. Cosloy, Cloning and structure of the hem A gene of Escherichia coli K-12, Gene 82, 209 (1989).PubMedCrossRefGoogle Scholar
  70. 70.
    E. Verkamp and B.K. Chelm, Isolation, nucleotide sequence and preliminary characterization of the Escherichia coli K 12 hem A gene, J. Bacteriol. 171, 4728 (1989).PubMedGoogle Scholar
  71. 71.
    G.P. O’Neill, M.-W. Chen and D. Söll, δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA, FEMS Microbiol. Lett. 60, 255 (1989).Google Scholar
  72. 72.
    Y.J. Avissar and S.I. Beale, Cloning and expression of a structural gene from Chlorobium vibrioforme that complements the hem A mutation in Escherichia coli, J. Bacteriol. 172, 1656 (1990).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Diter von Wettstein
    • 1
  1. 1.Department of PhysiologyCarlsberg LaboratoryCopenhagen ValbyDenmark

Personalised recommendations