Advertisement

The Thylakoid Membrane of Higher Plants: Genes, Their Expression and Interaction

  • Reinhold G. Herrmann
  • Ralf Oelmüller
  • Josef Bichler
  • Alois Schneiderbauer
  • Johannes Steppuhn
  • Norbert Wedel
  • Akilesh K. Tyagi
  • Peter Westhoff
Part of the NATO ASI Series book series (NSSA, volume 212)

Abstract

Chloroplasts are the major sites of energy conversion in the plant cell and play a vital physiological and metabolic role during plant growth and differentiation. Energy, organic matter and oxygen for nearly all biotic processes are provided by photosynthesis and the overwhelming amount of photosynthetic products is formed in the organelle.

Keywords

Thylakoid Membrane Chloroplast Genome Tobacco Chloroplast Thylakoid Protein Water Oxidation Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth CC, Miller TE, Gale MD (1987) a-amylase and ß-amylase homoeoloci in species related to wheat. Gen Res, 49: 93–103.CrossRefGoogle Scholar
  2. Anderson JM, Andersson B (1982) The architecture of photosynthetic membranes: Lateral and transverse organization. Trends Biochem Sci, 7: 288–292.CrossRefGoogle Scholar
  3. Barkan A (1988) Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic mRNAs. EMBO J, 7: 2637–2644.PubMedGoogle Scholar
  4. Bartling D, Clausmeyer S, Oelmüller R, Herrmann RG (1990) Towards epitope models for chloroplast transit sequences. In: “Regulation of Photosynthetic Processes”, S. Miyachi, ed., Bot Mag (Tokyo), Spec Issue 2: 119–144.Google Scholar
  5. Bedbrook JR, Link G, Coen DM, Bogorad L (1978) Maize plastid gene expressed during photo regulated development. Proc Natl Acad Sci USA, 75: 3060–3064.PubMedCrossRefGoogle Scholar
  6. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucl Acids Res, 12:8711–8721.PubMedCrossRefGoogle Scholar
  7. Bichler J, Herrmann RG (1990) Analysis of the promotors of the single-copy genes for plastocyanin and subunit delta of the chloroplast ATP synthase from spinach. Eur J Biochem, 190:415–426.PubMedCrossRefGoogle Scholar
  8. Clausmeyer S, Klösgen RB, Herrmann RG, Targeting efficiency of thylakoid lumen proteins, (submitted).Google Scholar
  9. Cozens AL, Walker JE, Philipps AL, Huttly AK, Gray JC (1986) A sixth subunit of ATP synthase, an Fo component, is encoded in the pea chloroplast genome. EMBO J, 5: 217–222.PubMedGoogle Scholar
  10. Cozens AL, Walker JE (1987) The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301. Support for an endosymbiotic origin of chloroplasts. J Mol Biol, 194: 359–383.PubMedCrossRefGoogle Scholar
  11. Ellis RG, Robinson C (1987) Protein targeting. Adv Bot Res, 14: 1–24.CrossRefGoogle Scholar
  12. Henning J, Herrmann RG (1986) Chloroplast ATP synthase of spinach contains nine nonidentical subunit species, six of which are encoded by plastid chromosomes in two operons in a phylogenetically conserved arrangement. Mol Gen Genet, 203: 117–128.CrossRefGoogle Scholar
  13. Herrmann RG, Possingham JV (1980) Plastid DNA — the plastome. In: “Results and Problems in Cell Differentiation”, vol. Chloroplasts, J. Reinert, ed., Springer: 45-96.Google Scholar
  14. Herrmann RG, Seyer P, Schedel R, Gordon K, Bisanz C., Winter P, Hildebrandt JW, Wlaschek M., Alt J, Driesel AJ, Sears BB (1980) The plastid chromosomes of several dicotyledons. In: “Biological Chemistry of Organelle Function”, 31st Colloquium Ges Biol Chem, Th. Bücher, W. Sebald and H. Weiß, eds., Springer: 97-112.Google Scholar
  15. Herrmann RG, Westhoff P, Alt J, Winter P, Tittgen J, Bisanz C., Sears BB, Nelson N, Hurt E, Hauska G, Viebrock A, Sebald W (1982) Identification and characterization of genes for polypeptides of the thylakoid membrane. In: “Structure and Function of Plant Genomes”, O. Cifferi and L. Dure III, eds., Plenum Publ Corp, New York: 143–154.Google Scholar
  16. Herrmann RG, Westhoff P, Alt J, Tittgen J, Nelson N (1985) Thylakoid membrane proteins and their genes. In: “Molecular Form and Function of the Plant Genome”, L. v. Vloten-Doting, G. Groot, T. Hall, eds., Plenum Publ Corp, New York: 233–256.Google Scholar
  17. Herrmann RG, Westhoff P, Tyagi AK, Link G Biogenesis of plastids in higher plants. In: “Cell Organelles — Plastids, Mitochondria, Glyoxisomes, Peroxisomes” R.G. Herrmann, ed., Spinger Wien, New York, in press.Google Scholar
  18. Hiratsuka J, Shimada H, Whittier R, Ishibashi R, Sakamoto M., Mori M., Kondo C., Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Gent, 217: 185–194.CrossRefGoogle Scholar
  19. Klein RR, Mullet JE (1986) Regulation of chloroplast-encoded chlorophyll-binding protein translation during higher plant chloroplast biogenesis. J Biol Chem, 261: 11138–11145.PubMedGoogle Scholar
  20. Klein RR, Mullet JE (1987) Control of gene expression during higher plant chloroplast biogenesis: protein synthesis and transcript levels of psbA, psaA-psaB, and rbcL in dark-grown and illuminated barley seedlings. J Biol Chem, 262: 4341–4348.PubMedGoogle Scholar
  21. Klein RR, Mason HS, Mullet JE (1988) Light-regulated translation of chloroplast proteins. I. Transcripts of psaA-psaB, psbA, and rbcL are associated with polysomes in darkgrown and illuminated barley seedlings. J Cell Biol, 196: 289–301.CrossRefGoogle Scholar
  22. Kreuz K, Dehesh K, Apel K (1986) The light-dependent accumulation of the P700 chlorophyll-a protein of the photosystem I reaction center in barley: evidence for translational control. Eur J. Biochem, 159: 459–467.PubMedCrossRefGoogle Scholar
  23. Laing W, Kreuz W, Apel K (1988) Light-dependent, but phytochrome-independent, translational control of the accumulation of the P700 chlorophyll-a protein of photosystem I in barley (Hordeum vulgare L.). Planta, 176: 269–276.CrossRefGoogle Scholar
  24. Li Y, Sugiura M (1990) Three distinct ribonucleoproteins from tobacco chloroplasts: Each contains a unique amino terminal acidic domain and two ribonucleoprotein consensus motifs. EMBO J. 9: 3059–3066.PubMedGoogle Scholar
  25. Marsden JE, Schawager SJ, May B (1987) Single-locus inheritance in the tetraploid tree frog Hyla versicolor with an analysis of expressed progeny ratios in tetraploid organisms. Genetics, 116: 299–311.PubMedGoogle Scholar
  26. Oelmüller R (1989) Photooxidative destruction of chloroplasts and its effect on nuclear gene expression and extraplastidic enzyme levels. Photochem Photobiol, 49: 229–239.CrossRefGoogle Scholar
  27. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M., Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature. 322:572–574.CrossRefGoogle Scholar
  28. Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet, 19:325–354.PubMedCrossRefGoogle Scholar
  29. Rodermel SR, Bogorad L (1985) Maize plastid photogenes: mapping and photoregulation of transcript levels during light-induced development. J Cell Biol, 100:463–476.PubMedCrossRefGoogle Scholar
  30. Shinozaki K, Ohme M., Tanaka M., Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C., Torazawa K, Meng B-Y, Sugita M., Deno H, Kamogashira T, Yamada K, Kusada J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5: 2043–2049.PubMedGoogle Scholar
  31. Stubbe W (1959) Genetische Analyse des Zusammenwirkens von Genom und Piastom bei Oenothera. Z Indukt Abstamm Vererbunasl. 90:288–298.Google Scholar
  32. Sugita M., Gruissem W (1987) Development, organ-specific and light-dependent expression of the tomato ribulose-1, 5-bisphosphate carboxylase small subunit gene family. Proc Natl. Aca Sci USA, 84: 7104–7108.CrossRefGoogle Scholar
  33. Taylor WC (1989) Regulatory interactions between nuclear and plastid genomes. Ann Rev Plant Phvs Plant Mol Biol, 40: 211–233.CrossRefGoogle Scholar
  34. Tyagi A, Hermans J, Steppuhn J, Jansson C., Vater J, Herrmann RG (1987) Nucleotide sequence of cDNA clones encoding the complete “33 kd” precursor protein associated with the photosynthetic oxygen-evolving complex from spinach. Mol Gen Genet, 207: 288–293.CrossRefGoogle Scholar
  35. Westhoff P, Farchaus JW, Herrmann RG (1986) The gene for the Mr 10.000 phosphoprotein associated with photosystem II is part of the psbB operon of the spinach plastid chromosome. Curr Genet, 11: 165–169.PubMedCrossRefGoogle Scholar
  36. Westhoff P, Herrmann RG (1988) Complex RNA maturation in chloroplasts: the psbB operon from spinach. Eur J Biochem, 171: 551–564.PubMedCrossRefGoogle Scholar
  37. Yao WB, Meng BY, Tanaka M., Sugiura M (1989) An additional promoter within the protein-coding region of the psbD-psbC gene cluster in tobacco chloroplast DNA. Nud Acids Res, 17: 9583–9591.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Reinhold G. Herrmann
    • 1
  • Ralf Oelmüller
    • 1
  • Josef Bichler
    • 1
  • Alois Schneiderbauer
    • 1
  • Johannes Steppuhn
    • 1
  • Norbert Wedel
    • 1
  • Akilesh K. Tyagi
    • 1
    • 2
  • Peter Westhoff
    • 1
    • 3
  1. 1.Botanisches Institut der Ludwig-Maximilians-UniversitätMünchen 19FR Germany
  2. 2.Department of Plant Molecular BiologyUniversity of Delhi (South Campus)New DelhiIndia
  3. 3.lnstitut für Entwicklungs- und Molekularbiologie der PflanzenHeinrich-Heine-UniversitätDüsseldorf 1FR Germany

Personalised recommendations