Morphogenetic Genes in the T-DNA of Ri Plasmids

  • P. Costantino
  • M. Cardarelli
  • I. Capone
  • A. De Paolis
  • P. Filetici
  • M. Pomponi
  • M. Trovato
Part of the NATO ASI Series book series (NSSA, volume 212)

Abstract

Agrobacterium rhizogenes is responsible for the hairy root syndrome of dicotyledonous plants which consists in an abundant proliferation of roots at the wounded site of bacterial infection (Elliot, 1951). Hairy roots contain a portion (T-DNA) of a large bacterial plasmid (Ri plasmid), which directs growth and differentiation of the transformed plant cells (Chilton et al., 1982; Spanò et al-, 1982b; White et al., 1982; Willmitzer et al.,1982). Hairy roots grow very actively in vitro in the absence of hormones with a characteristic highly branched and plagiotropic pattern (David et al., 1984); they synthesize specific opines of which three major types have been so far identified, agropine, mannopine and cucumopine (Petit and Tempe., 1985), corresponding to different families of Ri plasmids (Costantino et al., 1981). Whole, fertile plants of different species have been regenerated from hairy root tissues in several laboratories (Chilton et al., 1982; Spanò et al., 1982a; Tepfer, 1984; Spanò et al., 1987).

Keywords

Clarification Agrobacterium Nopaline Octopine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbier-Brygoo H, Maurel C., Shen WH, Ephritikhine G, Delbarre A, Guern J, 1990, Use of mutants and transformed plants to study the action of auxins, in: “Hormone perception and signal transduction in animals and plants”, JA Roberts, C Kirk, M Venis, eds, Company of Biologists, Cambridge.Google Scholar
  2. Bevan M., 1984, Binary Agrobacterium vectors for plant transformation, Nucleic Acids Res, 12:8711–8721.PubMedCrossRefGoogle Scholar
  3. Brevet J, Tempè J, 1988, Homology mapping of T-DNA regions of three Agrobacterium rhizogenes Ri plasmids by electron microscope eteroduplex studies, Plasmid, 19:75–83.PubMedCrossRefGoogle Scholar
  4. Brevet J, Borowski D, Tempè J, 1988, Identification of the region encoding opine synthesis and of a region involved in hairy root induction on the T-DNA of cucumber-type Ri plasmid, Mol Plant-Micr Interact, 1:75–79.CrossRefGoogle Scholar
  5. Capone I, Spanò L, Cardarelli M., Bellincampi D, Petit A, Costantino P, 1989a, Induction and growth properties of carrot roots with different complements of Agrobacterium rhizogenes T-DNA, Plant Mol Biol, 13:43–52.PubMedCrossRefGoogle Scholar
  6. Capone I, Cardarelli M., Trovato M., Costantino P, 1989b, Upstream non-coding region which confers polar expression to Ri plasmid root inducing gene rolB, Mol Gen Genet, 216:239–244.CrossRefGoogle Scholar
  7. Cardarelli M., Spanò L, De Paolis A, Mauro ML, Vitali G, Costantino P, Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes1855, Plant Mol Biol, 5:385–391.Google Scholar
  8. Cardarelli M., Spanò L, Mariotti D, Mauro ML, Costantino P, 1987a, The role of auxin in hairy root induction, Mol Gen Genet, 208:457–463.CrossRefGoogle Scholar
  9. Cardarelli M., Mariotti D, Pomponi M., Spanò L, Capone I, Costantino P, 1987b, Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype, Mol Gen Genet, 209.475–480.PubMedCrossRefGoogle Scholar
  10. Chilton MD, Tepfer DA, Petit A, Casse-Delbart F, Tempé J, 1982, Agrobacterium rhizogenes inserts T-DNA into the genome of host plant root cells, Nature, 295.432–434.CrossRefGoogle Scholar
  11. Combard A, Brevet J, Borowski D, Cam K, Tempé J, Physical map of the T-DNA region of Agrobacterium rhizogenes strain NCPPB2659, 1987, Plasmid 18:70–75.Google Scholar
  12. Costantino P, Mauro ML, Micheli G, Risuleo G, Hooykaas PJJ, Schilperoort RA, 1981, Fingerprinting and sequence homology of plasmids from different virulent strains of Agrobacterium rhizogenes, Plasmid, 5:170–182.PubMedCrossRefGoogle Scholar
  13. David C., Chilton MD, Tempé J, 1984, Conservation of T-DNA in plants regenerated from hairy root cultures, Biotechnology, 2:73–76.CrossRefGoogle Scholar
  14. De Paolis A, Mauro ML, Pomponi M., Cardarelli M., Spanò L, Costantino P, 1985, Localization of agropine synthesizing functions in the TR-region of the root inducing plasmid of Agrobacterium rhizogenes 1855, Plasmid, 13:1–7.PubMedCrossRefGoogle Scholar
  15. Filetici P, Spanò L, Costantino P, 1987, Conserved regions in the T-DNA of different Agrobacterium rhizogenes root-inducing plasmids, Plant Mol Biol, 9:19–26.CrossRefGoogle Scholar
  16. Koplow J, Byrne MC, Jen G, Tempè J, Cilton MD, 1984, Physical map of the Agrobacterium rhizogenes strain 8196 virulence plasmid, Plasmid, 11:17–27.PubMedCrossRefGoogle Scholar
  17. Lahners K, Byrne MC, Chilton MD, 1984, T-DNA fragments of hairy root plasmid pRi8196 are distantly related to octopine and nopaline Ti plasmid T-DNA, Plasmid, 11:130–140.PubMedCrossRefGoogle Scholar
  18. Petit A, Tempé J, The function of T-DNA in nature, 1985, in: “Molecular form and function of the plant genome”, L Van Vloten-Doting, G Groot, T Hall, eds, Plenum Press, New York.Google Scholar
  19. Pomponi M., Spanò L, Sabbadini MG, Costantino P, 1983, Restriction endonuclease mapping of the root-inducing plasmid of Agrobacterium rhizogenes 1855, Plasmid, 10:119–129.PubMedCrossRefGoogle Scholar
  20. Shen WH, Petit A, Guern J, Tempé J, 1988, Hairy roots are more sensitive to auxin than normal roots, Proc Natl Acad Sci USA, 85:3417–3421.PubMedCrossRefGoogle Scholar
  21. Slightom JL, Durand-Tardif M., Jouanin L, Tepfer D, 1986, Nucleotide sequence analysis of Agrobacterium rhizogenes agropine type plasmid: identification of open-reading frames, J Biol Chem, 261:108–121.PubMedGoogle Scholar
  22. Spanò L, Costantino P, 1982a, Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on tobacco, Z Pflanzenphysiol, 106.87–92.Google Scholar
  23. Spanò L, Pomponi M., Costantino P, Van Slogteren GMS, Tempè J, 1982b, dentification of T-DNA in the root inducing plasmid of the agropine-type Agrobacterium rhizogenes 1855, Plant Mol Biol, 1:291–300.CrossRefGoogle Scholar
  24. Spanò L, Mariotti D, Pezzotti M., Damiani F, Arcioni S, 1987, hairy root transformation in alfalfa (Medicago sativa L.), Theor Appl Genet, 73:523–530.CrossRefGoogle Scholar
  25. Spanò L, Mariotti D, Cardarelli M., Branca C., Costantino P, 1988, Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA, Plant Physiol, 87:479–483.PubMedCrossRefGoogle Scholar
  26. Tepfer D, 1984, Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype, Cell, 37:959–967.PubMedCrossRefGoogle Scholar
  27. Trovato M., Cianfriglia M., Filetici P, Mauro ML, Costantino P, 1990, Expression of Agrobacterium rhizogenes rolB gene fusions in Escherichia coli: Production of antibodies against the RolB protein, Gene, 87:139–143.PubMedCrossRefGoogle Scholar
  28. White FF, Ghidossi G, Gordon MP, Nester EW, 1982, Tumor induction by Agrobacterium rhizogenes involves the trnsfer of plasmid DNA to the plant genome, Proc Natl Acad Sci USA, 79:3193–3197.PubMedCrossRefGoogle Scholar
  29. White FF, Taylor BH, Huffmann GA, Gordon MP, Nester EW, 1985, Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes, J Bacteriol, 164:33–44.PubMedGoogle Scholar
  30. Willmitzer L, Sanchez-Serrano J, Buschfeld E, Schell J, 1982, DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissue, Mol Gen Genet, 186:16–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • P. Costantino
    • 1
  • M. Cardarelli
    • 1
  • I. Capone
    • 1
  • A. De Paolis
    • 1
  • P. Filetici
    • 1
  • M. Pomponi
    • 1
  • M. Trovato
    • 1
  1. 1.Dip. Genetica e Biologia MolecolareUniversità “La Sapienza” and Centro Acidi Nucleici, CNRRomaItaly

Personalised recommendations