Skip to main content

GABAergic Neuronal Circuitry in the Periaqueductal Gray Matter

  • Chapter
The Midbrain Periaqueductal Gray Matter

Part of the book series: NATO ASI Series ((NSSA,volume 213))

Abstract

The midbrain periaqueductal gray matter (PAG) has been implicated in a wide range of possible functions including antinociception, reproductive behavior, and components of the defense reaction (Besson; Ogawa et al.; Bandler and Depaulis, this volume). Stimulation of the PAG, using electrodes or excitatory amino acids, has been very useful for characterizing the effects that can be elicited from the PAG, by essentially treating the PAG as a “black box,” bypassing intrinsic circuitry to ultimately activate efferent axons. Thus, our knowledge is limited concerning the neuronal circuitry internal to the PAG that regulates individually or collectively, its putative functions. This chapter describes results of anatomical, pharmacological, and electrophysiological studies suggesting that GABAergic neuronal elements play a prominent role in the intrinsic neuronal circuitry of the PAG. Based on this information, it seems likely that GABAergic neurons in the PAG are local circuit interneurons, and that GABAergic elements exert potent tonic inhibitory control over a variety of putative PAG functions including antinociception. To begin characterizing the anatomical basis for such GABAergic controls in the PAG, our work has combined the methods of immunocytochemistry with retrograde tracing at the electron microscopic level. These studies demonstrated that GABA-immunoreactive axon terminals synapse directly on neurons that give rise to the major projection from the PAG to the medullary nucleus raphe magnus (NRM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aas, J.E. and Brodal, P., GABA and glycine as putative transmitters in subcortical pathways to the pontine nuclei, combined immunocytochemical and retrograde tracing study in the cat with some observations in the rat, Neurosci., 34 (1990) 149–162.

    Article  CAS  Google Scholar 

  • Bandler, R., Brain mechanisms of aggression as revealed by electrical and chemical stimulation: Suggestion of a central role for the midbrain periaqueductal grey region, In: Prog. Psychobiol. Physiol. Psychol., Vol. 13., Epstein A. and Morrison A. (Eds.), Academic Press, New York, 1988, pp. 67–154.

    Google Scholar 

  • Barbaresi, P. and Manfrini, E., Glutamate decarboxylase-immunoreactive neurons and terminals in the periaqueductal gray of the rat, Neuroscience, 27 (1988) 183–191.

    Article  CAS  PubMed  Google Scholar 

  • Basbaum, A.I. and Fields, H.L., Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry, Ann. Rev. Neurosci., 7 (1984) 309–338.

    Article  CAS  PubMed  Google Scholar 

  • Basbaum, A.I. and Menetrey, D., Wheat germ agglutinin-apoHRP gold: a new retrograde tracer for light- and electron-microscopic single- and double-label studies, J. Comp. Neurol., 261 (1987) 306–318.

    Article  CAS  PubMed  Google Scholar 

  • Beart, P.M., Summers, R.J., Stephenson, J.A., Cook, C.J. and Christie, M.J., Excitatory amino acid projections to the periaqueductal gray in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA, Neuroscience, 34 (1990) 163–176.

    Article  CAS  PubMed  Google Scholar 

  • Behbehani, M.M., Jiang, M., Chandler, S.D. and Ennis, M., The effect of GABA and its antagonists on midbrain periaqueductal gray neurons in the rat, Pain, 40 (1990) 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Belin, M.F., Aguera, M., Tapaz, A., McRae-DeQueurce, A., Bobillier, P. and Pujol, J.F., GABA-accumulating neurons in the nucleus raphe dorsalis and periaqueductal gray matter in the rat: a biochemical and radioautographic study, Brain Res., 170 (1979) 279–297.

    Article  CAS  PubMed  Google Scholar 

  • Bowery, N.G., Hudson, A.L. and Price, G.W., GABAA and GABAB receptor site distribution in the rat central nervous system, Neuroscience, 20 (1987) 365–383.

    Article  CAS  PubMed  Google Scholar 

  • Brandão, M.L., DeAguiar, J.C. and Graeff, F.G., Mediation of the anti-aversive action of minor tranquilizers, Pharmacol. Biochem. Behav., 16 (1982) 397–402.

    Article  PubMed  Google Scholar 

  • Clements, J.R., Beitz, A.J., Larson, A.A. and Madl, J.E., The ultrastructural localization of polyclonal GABA and monoclonal glutamate immunoreactivity in the rat midbrain periaqueductal gray, Soc. Neurosci. Abst., 11 (1985) 126.

    Google Scholar 

  • Crain, S.M. and Shen, K.F., Opioids can evoke direct receptor-mediated excitatory effects on sensory neurons, Trends Pharmacol. Sci., 11 (1990) 77–81.

    Article  CAS  PubMed  Google Scholar 

  • Csillag, A., Stewart, M.G. and Curtis, E.M., GABAergic structures in the chick telencephalon: GABA immunocytochemistry combined with light and electron microscope autoradiography, and Golgi impregnation, Brain Res., 437 (1987) 283–297.

    Article  CAS  PubMed  Google Scholar 

  • DeFeudis, F.V., Central GABAergic systems and analgesia, Drug Dev. Res., 3 (1983) 1–15.

    Article  CAS  Google Scholar 

  • Depaulis, A. and Vergnes, M., Elicitation of intraspecific defensive behaviors in the rat by microinjections of picrotoxin, a GABA antagonist, into the midbrain periaqueductal gray matter, Brain Res., 367 (1986) 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Depaulis, A., Morgan, M.M. and Liebeskind, J.C., GABAergic modulation of the analgesic effects of morphine microinjected in the periaqueductal gray matter of the rat, Brain Res., 436 (1987) 223–228.

    Article  CAS  PubMed  Google Scholar 

  • DiScala, G., Schmitt, P. and Karli, P., Flight induced by infusion of bicuculline methiodide into periventricular structures, Brain Res., 309 (1984) 199–208.

    Article  CAS  Google Scholar 

  • Dostrovsky, J.O. and Deakin, J.F.W., Periaqueductal gray lesions reduce morphine analgesia in the rat, Neurosci. Lett., 4 (1977) 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Drower, E.J. and Hammond, D.L., GABAergic modulation of nociceptive threshold: effects of THIP and bicuculline microin jected in the ventral medulla of the rat, Brain Res., 450 (1988) 316–324.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, D.L. and Drower, E.J., Effects of intrathecally administered THIP, baclofen, and muscimol on nociceptive threshold, Eur. J. Pharmacol., 103 (1984) 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Harandi, M., Aguera, M., Gamrani, H., Didier, M., Maitre, M., Calas, A. and Belin, M.F., Gamma-aminobutyric acid and 5-hydroxytryptamine interrelationship in the rat nucleus raphe dorsalis: combination of radioautographic and immunocytochemical techniques at light and electron microscopy levels, Neuroscience, 21 (1987) 237–251.

    Article  CAS  PubMed  Google Scholar 

  • Herkenham, M., Mismatches between neurotransmitter and receptor localizations in the brain: observation and implications, Neuroscience, 23 (1987) 1–38.

    Article  CAS  PubMed  Google Scholar 

  • Hironaka, T., Morita, Y, Hagihira, S., Tateno, E., Kita, H. and Tohyama, M., Localization of GABAA-receptor alpha1 subunit mRNA-containing neurons in the lower brainstem of the rat, Molec. Brain Res., 7 (1990) 335–345.

    Article  CAS  PubMed  Google Scholar 

  • Hokoc, J.N., Ventura, A.L.M., Gardino, P.F. and DeMello, F.G., Developmental immune-reactivity for GABA and GAD in the avian retina: possible alternative pathway for GABA synthesis, Brain Res., 532 (1990) 197–202.

    Article  CAS  PubMed  Google Scholar 

  • Hökfelt, T. and Ljundahl, Å., Cellular localization of labeled gamma-aminobutyric acid (3H-GABA) in rat cerebellar cortex: an autoradiographic study, Brain Res., 22 (1970) 391–396.

    Article  PubMed  Google Scholar 

  • Holstege, G., Direct and indirect pathways to lamina I in the medulla oblongata and spinal cord of the cat, Prog. Brain Res., 77 (1988) 47–94.

    Article  CAS  PubMed  Google Scholar 

  • Imperato, A. and DiChiara, G., Behavioural effects of GABA-agonists and antagonists infused in the mesencephalic reticular formation-deep layers of superior colliculus, Brain Res., 224 (1981) 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Jenck, F., Moreau, J.L. and Karli, P., Modulation by morphine of aversive-like behavior induced by GABAergic blockade in periaqueductal gray or medial hypothalamus, Pharmacol. Biochem. Behav., 31 (1988) 193–200.

    Article  CAS  PubMed  Google Scholar 

  • Keay, K.A., Redgrave, P. and Dean, P., Cardiovascular and respiratory changes elicited by stimulation of rat superior colliculus, Brain Res. Bull., 20 (1988) 13–26.

    Article  CAS  PubMed  Google Scholar 

  • Kisvárday, Z.F., Cowey, A., Hodgson, A.J. and Somogyi, P., The relationship between GABA immunoreactivity and labelling by local uptake of [3H]GABA in the striate cortex of monkey, Exp. Brain Res., 62 (1986) 89–98.

    Article  PubMed  Google Scholar 

  • Levitan, E.S., Schofield, P.R., Burt, D.R., Rhee, L.M., Wisden, W., Khöler, M., Fujita, N., Rodriguez, H., Stephenson, F.A., Darlison, M.G., Barnard, E.A. and Seeburg, P.H., Structural and functional basis for GABAA receptor heterogeneity, Nature, 335 (1988) 76–79.

    Article  CAS  PubMed  Google Scholar 

  • Levy, R.A. and Proudfit, H.K., Analgesia produced by microinjection of baclofen and morphine at brain stem sites, Eur. J. Pharmacol., 57 (1979) 43–55.

    Article  CAS  PubMed  Google Scholar 

  • Lim, C.R., Garant, D.S. and Gale, K., GABA agonist induced analgesia from the lateral preoptic area in the rat, Eur. J. Pharmacol., 107 (1985) 91–94.

    Article  Google Scholar 

  • Liu, R.P.C. and Hamilton, B.L., Neurons of the periaqueductal gray matter as revealed by Golgi study, J. Comp. Neurol., 189 (1980) 403–418.

    Article  CAS  PubMed  Google Scholar 

  • Mantyh, P.W., The midbrain periaqueductal gray in the rat, cat, and monkey: a Nissl, Weil, and Golgi analysis, J. Comp. Neurol., 204 (1982) 349–363.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, D.J. and Liebeskind, J.C., Pain reduction by focal electrical stimulation of the brain: an anatomical and behavioral analysis, Brain Res., 68 (1974) 73–93.

    Article  CAS  PubMed  Google Scholar 

  • McCabe, R.T. and Wamsley, J.K., Autoradiographic localization of subcomponents of the macromolecular GABA receptor complex, Life Sci., 39 (1986) 1937–1945.

    Article  CAS  PubMed  Google Scholar 

  • Moreau, J.L. and Fields, H.L., Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission, Brain Res., 397 (1986) 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, M.M., Levin, E.D. and Liebeskind, J.C., Characterization of the analgesic effects of the benzodiazepine antagonist, Ro 15–1788, Brain Res., 415 (1987) 367–370.

    Article  CAS  PubMed  Google Scholar 

  • Moss, M.S., Glazer, E.J. and Basbaum, A.I., The peptidergic organization of the cat periaqueductal gray: I. the distribution of enkephalin-containing neurons and terminals, J. Neurosci., 3 (1983) 603–616.

    CAS  PubMed  Google Scholar 

  • Mugnaini, E. and Oertel, W.H., An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry, In: Handbook of Chemical Neuroanatomy. Vol. 4: GABA and Neuropeptides in the CNS, Part 1, Björklund A. and Hökfelt T. (Eds.), Elsevier, Amsterdam, 1985, pp. 436–608.

    Google Scholar 

  • Nagai, T., McGeer, T.L. and McGeer, E.G., Distribution of GABA-T intensive neurons in the rat forebrain and midbrain, J. Comp. Neurol., 218 (1983) 220–238.

    Article  CAS  PubMed  Google Scholar 

  • Newton, B.W. and Maley, B.E., A comparison of GABA- and GAD-like immunoreactivity within the area postrema of the rat and cat, J. Comp. Neurol., 255 (1987) 208–216.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, S., Kow, L.M. and Pfaff, D.W., Neuronal activity of dorsal periaqueductal gray neurons of female rats: responsiveness to GABA and enkephalin, Soc. Neurosci. Abst., 15 (1989) 146.

    Google Scholar 

  • Ottersen, O.P. and Storm-Mathisen, J., Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique, J. Comp. Neurol., 229 (1984) 374–392.

    Article  CAS  PubMed  Google Scholar 

  • Penny, G.R., Conley, M., Diamond, I.T. and Schmechel, D.E., The distribution of glutamic acid decarboxylase immunoreactivity in the diencephalon of the opossum and rabbit, J. Comp. Neurol., 228 (1984) 38–57.

    Article  CAS  PubMed  Google Scholar 

  • Proudfít, H.K. and Levy, R.A., Delimitation of neuronal substrates necessary for the analgesic action of baclofen and morphine, Eur. J. Pharmacol., 47 (1978) 159–166.

    Article  PubMed  Google Scholar 

  • Reichling, D.B. and Basbaum, A.I., The contribution of brainstem GABAergic circuitry to descending antinociceptive controls. I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus, J. Comp. Neurol., 302 (1990a) 370–377.

    Article  CAS  PubMed  Google Scholar 

  • Reichling, D.B. and Basbaum, A.I., The contribution of brainstem GABAergic circuitry to descending antinociceptive controls. II. Electron microscopic immunocytochemical evidence of GABAergic control over the projection from the periaqueductal gray matter to the nucleus raphe magnus, J. Comp. Neurol., 302 (1990b) 378–393.

    Article  CAS  PubMed  Google Scholar 

  • Reichling, D.B. and Basbaum, A.I., Collateralization of periaqueductal gray neurons to forebrain or diencephalon and nucleus raphe magnus, Neuroscience, 42 (1991) 183–200.

    Article  CAS  PubMed  Google Scholar 

  • Reichling, D.B., Chazal, G. and Basbaum, A.I., Electron microscopic immunocytochemical evidence of GABAergic synaptic contacts onto serotonergic neurons in the dorsal raphe nucleus of rat, in preparation.

    Google Scholar 

  • Reichling, D.R., Kwait, G.C. and Basbaum, A.I., Anatomy, physiology, and pharmacology of the periaqueductal gray contribution to antinociceptive controls, Prog. Brain Res., 77 (1988) 31–46.

    Article  CAS  PubMed  Google Scholar 

  • Retz, K.C. and Holaday, L.M., Analgesia and motor activity following administration of THIP into the periaqueductal gray and lateral ventricle, Drug. Dev. Res., 9 (1986) 133–142.

    Article  CAS  Google Scholar 

  • Ribak, C.E. and Roberts, R.C., GABAergic synapses in the brain identified with antisera to GABA and its degradative enzyme, glutamate decarboxylase, J. Elec. Microsc. Tech., 15 (1990) 34–48.

    Article  CAS  Google Scholar 

  • Romandini, S. and Samanin, R., Muscimol injections in the nucleus raphe dorsalis block the antinociceptive effects of morphine in rats: apparent lack of 5-hydroxytryptamine involvement in muscimol’s effect, Br. J. Pharmacol., 81 (1984) 25–29.

    Article  CAS  PubMed  Google Scholar 

  • Saito, K., Barber, R., Wu, J.Y., Matsuda, T., Roberts, E. and Vaughn, J.E., Immunohistochemical localization of glutamic acid decarboxylase in rat cerebellum, Proc. Nat. Acad. Sci., 71 (1974) 269–273.

    Article  CAS  PubMed  Google Scholar 

  • Sandner, G., Dessort, D., Schmitt, P. and Karli, P., Distribution of GABA in the periaqueductal gray matter. Effects of medial hypothalamic lesions, Brain Res., 224 (1981) 279–290.

    Article  CAS  PubMed  Google Scholar 

  • Sandner, G., Schmitt, P. and Karli, P., Unit activity alterations induced in the mesencephalic periaqueductal gray by local electrical stimulation, Brain Res., 386 (1986) 53–63.

    Article  CAS  PubMed  Google Scholar 

  • Schenberg, L.C., DeAguiar, J.C. and Graeff, F.G., GABA modulation of the defence reaction induced by brain electrical stimulation, Physiol. Behav., 31 (1983) 429–437.

    Article  CAS  PubMed  Google Scholar 

  • Schoch, P., Richards, J.G., Häring, P., Takacs, B., Stähli, C., Staehelin, T., Haefely, W. and Möhler, H., Co-localization of GABAA receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies, Nature, 314 (1985) 168–170.

    Article  CAS  PubMed  Google Scholar 

  • Seiler, N. and Al-Therib, M.J., Putrescine catabolism in mammalian brain, Biochem. J., 144 (1974) 29–35.

    CAS  PubMed  Google Scholar 

  • Sherman, A.D. and Gebhart, G.F., Morphine and pain: effects on aspartate GABA and glutamate in four discrete areas of mouse brain, Brain Res., 110 (1976) 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Sivilotti. L. and Nistri, A., GABA receptor mechanisms in the central nervous system, Prog. Neurobiol., 36 (1991) 35–92.

    Article  CAS  PubMed  Google Scholar 

  • Spreafico, R., DeBiase, S., Frassoni, C. and Battaglia, G., A comparison of GAD- and GABA-immunoreactive neurons in the first somatosensory area (SI) of the rat cortex, Brain Res., 474 (1988) 192–196.

    Article  CAS  PubMed  Google Scholar 

  • Stein, L., Wise, C.D. and Beluzzi, J.D., Effects of benzodiazepines on central serotonergic mechanisms, Adv. Biochem. Psychopharmacol., 14 (1975) 29–44.

    CAS  PubMed  Google Scholar 

  • Storm-Mathisen, J., Leknes, A.K., Bore, A.T., Vaaland, J.L., Edminson, P., Haug, F.M.S. and Otter sen, O.P., First visualization of glutamate and GAB A in neurones by immunocytochemistry, Nature, 301 (1983) 517–520.

    Article  CAS  PubMed  Google Scholar 

  • Tredici, G., Bianchi, R. and Gioia, M., Short intrinsic circuit in the periaqueductal gray matter of the cat, Neurosa. Lett., 39 (1983) 131–136.

    Article  CAS  Google Scholar 

  • Williams, F.G. and Beitz, A.L., Ultra structural morphometric analysis of GABA-immunoreactive terminals in the ventrocaudal periaqueductal grey: analysis of the relationship of GABA terminals and the GABAA receptor to periaqueductal grey-raphe magnus projection neurons, J. Neurocytol., 19 (1990) 686–696.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, P.R. and Yaksh, T.L., Baclofen is antinociceptive in the intrathecal space of animals, Eur. J. Pharmacol., 51 (1978) 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Yaksh, T.L., Yeung, Y.C. and Rudy, T.A., Systematic examination in the rat of brainstem sites sensitive to the direct application of morphine: observation of differential effects within the periaqueductal gray, Brain Res., 114 (1976) 83–103.

    Article  CAS  PubMed  Google Scholar 

  • Young, W.S. and Kuhar, M.J., Radiohistochemical localization of benzodiazepine receptors in rat brain, J. Pharmacol. Exp. Ther., 212 (1980) 337–346.

    CAS  PubMed  Google Scholar 

  • Zambotti, F., Zonta, N., Parenti, M., Tommasi, R., Vicentini, L., Conci, F. and Montegazza, P., Periaqueductal gray matter involvement in the muscimol induced decrease of morphine antinociception, Naunyn-Scheideberg’s Arch. Pharmacol., 318 (1982) 368–369.

    Article  CAS  Google Scholar 

  • Zieglgänsberger, W., French, E.D., Siggins, G.R. and Bloom, F.E., Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons, Science, 205 (1979) 415.

    Article  PubMed  Google Scholar 

  • Zucker, C., Yazulla, S. and Wu, J.Y., Non-correspondence of [3H]GABA uptake and GAD localization in goldfish amacrine cells, Brain Res., 298 (1984) 154–158.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reichling, D.B. (1991). GABAergic Neuronal Circuitry in the Periaqueductal Gray Matter. In: Depaulis, A., Bandler, R. (eds) The Midbrain Periaqueductal Gray Matter. NATO ASI Series, vol 213. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3302-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3302-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6453-5

  • Online ISBN: 978-1-4615-3302-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics