Simulation and Modeling Methodology

  • Michel C. Jeruchim
  • Philip Balaban
  • K. Sam Shanmugan
Part of the Applications of Communications Theory book series (ACTH)


Building simulation models and running (executing) simulations are activities that call upon a wide variety of skills and considerations which, for present purposes, we might divide into two broad categories: the “art” and the “science” of simulation. In the latter camp we include the more theoretically based and quantitative aspects which have formed the bulk of the preceding chapters. On the other hand, there is a set of considerations only partially or perhaps not at all related to theoretical or quantifiable matters, or difficult to describe in such terms, that are nevertheless fundamental in building simulations and in obtaining useful results. This set we might regard as the “art” of simulation. These latter considerations and ways of dealing with them essentially form the methodology of simulation. The dividing line between “art” and “science” is somewhat subjective, but is not critical, in any case. In this chapter we discuss several issues that we classify as methodological.


Phase Noise Phase Error Convolutional Code Modeling Methodology Loop Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Shanmugan, An update on software packages for simulation of communication systems (links), IEEE J. Selected Areas Commun. 6(1), 5–12 (1988).CrossRefGoogle Scholar
  2. 2.
    R. A. Harris and P. Kristiansen, The generation and use of bit error rate surface plotsIEEE J. Selected Areas Commun. SAC- 2(1), 185–190 (1984).CrossRefGoogle Scholar
  3. 3.
    L. C. Palmer and S. Lebowitz, Including synchronization in time-domain channel simulation, COMSAT Tech. Rev. 7(2), 475–525 (1977).Google Scholar
  4. 4.
    I. Richer, A block phase estimator for offset-QPSK signaling, Proc. National Telecommun. Conf., New Orleans, LA, Dec., 1975.Google Scholar
  5. 5.
    M. C. Jeruchim, Some modeling aspects in the simulation of digital links, Proc. International Telemetering Conf., Los Angeles, CA, Nov. 14–16, 1978.Google Scholar
  6. 6.
    W. C. Lindsey and C. M. Chie, A survey of digital phase-locked loops, Proc. IEEE 69(4), 410–431 (1981).CrossRefGoogle Scholar
  7. 7.
    S. C. Gupta, Phase-locked loops, Proc. IEEE 63(2), 291–306 (1975).CrossRefGoogle Scholar
  8. 8.
    R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1983.Google Scholar
  9. 9.
    M. Pent, L. LoPresti, M. Mondin, and L. Zaccagnini, Multirate sampling techniques for simulation of communication systems, IASTED Int. Symp. on Modeling, Identification, and Control, Grindewald, Switzerland, February, 1987.Google Scholar
  10. 10.
    V. Castellani, M. Mondin, M. Pent, and P. Secchi, Simulation of spread spectrum communication links, Presented at 2nd IEEE International Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks, Amherst, MA, October 12–14, 1988.Google Scholar
  11. 11.
    R. Blum and M. C. Jeruchim, Modeling nonlinear amplifiers for communication simulation, Proc. Int. Conf. Commun. (ICC ‘89), Boston, MA, June 11–15, 1989.Google Scholar
  12. 12.
    D. Stapor and D. Hayes, On the number of symbols processed in quasianalytic communications link simulation, Presented at 2nd IEEE International Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks, Amherst, MA, October 12–14, 1988.Google Scholar
  13. 13.
    J. G. Proakis, Digital Communications, McGraw-Hill, New York (1983).Google Scholar
  14. 13a.
    M. L. Steinberger, P. Balaban, and K. S. Shanmugan, On the effects of uplink noise, Conf. Red. Int. Conf. Commun. (ICC ‘81), Denver, CO, June 10–14, 1981.Google Scholar
  15. 14.
    M. Pent, L. LoPresti, G. D’Aria, and G. DeLuca, Semianalytic BER estimation by simulation for nonlinear bandpass channels, IEEE J. Selected Areas Commun. 6(1), 34–41 (1988).CrossRefGoogle Scholar
  16. 15.
    D. J. Torrieri, The information-bit error rate for block codes, IEEE Trans. Commun.COM-32(4), 474–476 (1984).Google Scholar
  17. 16.
    M. C. Jeruchim, On the coding gain for degraded channels,IEEE Trans. Commun.COM-34(5), 492–496 (1986).CrossRefGoogle Scholar
  18. 17.
    A. J. Viterbi, Convolutional codes and their performance in communication systems, IEEE Trans. Commun. Technol . ÇOM-19(5), 751–772 (1971) (Part II).MathSciNetCrossRefGoogle Scholar
  19. 18.
    M. C. Jeruchim and T. J. Kiandrud, On the steady-state simulation of equalized digital communications links, Conf. Rcd. IEEE Global Telecommun. Conf., New Orleans, LA, Dec. 2–5, 1985, Vol. I.Google Scholar
  20. 19.
    C. A. Belfiore and J. H. Park, Decision feedback equalization, Proc.. IEEE 67 (8), 1143–1156 (1979).CrossRefGoogle Scholar
  21. 20.
    J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7, 308–383 (1965).MATHCrossRefGoogle Scholar
  22. 21.
    D. M. Jansky and M. C. JeruchimCommunication Satellites in the Geostationary Orbit, Artech House, Norwood, MA (2nd Ed.) (1987).Google Scholar
  23. 22.
    V. K. Prabhu, Error rate considerations for coherent phase-shift-keyed systems with co-channel interference, Bell Syst. Tech. J. 48 (3), 743–767 (1969).MATHGoogle Scholar
  24. 23.
    S. Benedetto, E. Biglieri, and V. Castellani, Combined effects of intersymbol. interchannel,. and co-channel interference in M-ary CPSK systems,IEEE Trans. Commun.COM-21(9), 997–1008 (1973).CrossRefGoogle Scholar
  25. 24.
    E. L. Pinto and J. C. Brandão, On the efficient use of computer simulated digital signals to evaluate performance parameters, IEEE J. Selected Areas Commun. 6(1), 52–57 (1988).CrossRefGoogle Scholar
  26. 25.
    G. S. Fishman,Concepts and Methods in Discrete Event Digital Simulation, J. Wiley and Sons, New York (1973) Chap. 7.Google Scholar
  27. 26.
    D. E. Knuth, The Art of Computer Programming, 2nd Ed., Vol. 2, Seminumerical Algorithms,Addison-Wesley, Reading, MA (1981).Google Scholar
  28. 27.
    Stephen K. Park and K. W. Miller, Random number generators: Good ones are hard to find, Commun. ACM 31 (10),1192–1201 (1988).MathSciNetCrossRefGoogle Scholar
  29. 28.
    J. H. Moore and M. C. Jeruchim, Empirical study on the variability of Monte Carlo simulation, Proc. Int. Telemetering Conf., San Diego, CA, October 14–16,1980.Google Scholar
  30. 29.
    A. Papoulis,Signal Analysis, McGraw-Hill, New York (1977).MATHGoogle Scholar
  31. 30.
    Special Issue on Frequency Stability, Proc. IEEE 54(2), February (1966).Google Scholar
  32. 31.
    B. Mandelbrot, Some noises with 1/f spectrum; A bridge between direct current and white noise, IEEE Trans. Inf. Theory IT- 13 (2), 289–298 (1967).MATHCrossRefGoogle Scholar
  33. 32.
    B. Mandelbrot and J. W. VanNess, Fractional Brownian motions, fractional noises, and applications, SIAM Rev . 10(4), 422–437 (1968).MathSciNetMATHCrossRefGoogle Scholar
  34. 33.
    W. C. Lindsey and C. M. Chie, Theory of oscillator instability based on structure functions, Proc. IEEE 64 (12), 1652–1666 (1976).MathSciNetCrossRefGoogle Scholar
  35. 34.
    M. S. Keshner, 1/f Noise, Proc. IEEE 70 (3), 212–218 (1982).CrossRefGoogle Scholar
  36. 35.
    J. Rutman, Characterization of phase and frequency instabilities in precision frequency sources: Fifteen years of progress, Proc. IEEE 66 (9), 1048–1075 (1978).CrossRefGoogle Scholar
  37. 36.
    M. L. Liou, Noise in an FM system due to an imperfect linear transducer, Bell Syst. Tech. J. 45, 1537–1561 (1966).Google Scholar
  38. 37.
    T. G. Cross, Intermodulation in FM systems due to transmission deviations and AM/PM conversion, Bell Syst. Tech. J. 45, 1749–1773 (1966).Google Scholar
  39. 38.
    J. G. Garrison, Intermodulation distortion in frequency-division-multiplex FM systems-A tutorial summary, IEEE Trans. Commun. Technol . COM-16(2), 289–303. (1968).CrossRefGoogle Scholar
  40. 39.
    F. J. Scire, A probability density function theorem for the modulo Y values of the sum of two statistically independent processes, Proc. IEEE (Lett.) 56(2), 204–205 (1968). [See also Proc. IEEE Lett. 58(4), 604 (1970).]Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Michel C. Jeruchim
    • 1
  • Philip Balaban
    • 2
  • K. Sam Shanmugan
    • 3
    • 4
  1. 1.GE AerospacePhiladelphiaUSA
  2. 2.AT&T Bell LaboratoriesHolmdelUSA
  3. 3.University of KansasLawrenceUSA
  4. 4.Comdisco SystemsFoster CityUSA

Personalised recommendations