Thrombin pp 315-350 | Cite as

Functional Domains in Thrombin Outside the Catalytic Site

Cellular Interactions
  • Rachel Bar-Shavit
  • Miriam Benezra
  • Valerie Sabbah
  • Elisabetta Dejana
  • Israel Vlodavsky
  • George D. Wilner


Thrombin is known to be sequestered within the matrix of the fibrin gel, where it may remain active and intact for extended periods of time (Wilner et al., 1981; Mann, 1987). Since deposition of fibrin accompanies wound healing, thrombin may participate in modulation of this process. Inflammation is a localized protective response elicited by injury or destruction of tissues, which serves to destroy both the injurious agent and the injured tissue. Most forms of acute and chronic inflammation are amplified and propagated as a result of the recruitment of humoral and cellular components of the immune system. Immunologically mediated elimination of foreign material proceeds through a series of integrated steps. The actual destruction of antigens by immune mechanisms is mediated by cells with phagocytic capability. Such cells may migrate freely or may exist at fixed sites as components of the mononuclear phagocyte system. Since inflammation in its early stages is characterized by an influx of inflammatory cells, we wondered whether thrombin might participate in recruitment of such cells.


Heparan Sulfate Multifunctional Protein J774 Cell Human Peripheral Blood Monocyte Thrombin Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations used


anti-thrombin III


basic fibroblast growth factor


bone-marrow-derived macrophages


diisopropylfluorophosphate α-thrombin


endothelial cell


extracellular matrix




methylsulfonyl fluoride


d-phenylalanyl-l-prolyl-l-arginyl-chloromethyl ketone


smooth muscle cell


N-α-tosyl-l-lysine chloromethyl ketone


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Awbrey, B.,J., Hoak, J. C., and Owen, W. G., 1979, Binding of human thrombin to cultured endothelial cells, J. Biol. Chem. 254: 4092–4095.PubMedGoogle Scholar
  2. Baird, A., Mormede, P., and Bohlen, P., 1985, Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor, Biochem. Biophys. Res. Commun. 126: 358–364.PubMedCrossRefGoogle Scholar
  3. Bar-Shavit, R., and Wilner, G. D., 1986, Mediation of cellular events by thrombin, Int. Rev. Exp. Pathol. 29: 213–241.PubMedGoogle Scholar
  4. Bar-Shavit, R., Kahn, A., Fenton, J. W., II, and Wilner, G. D., 1983a, Chemotactic response of monocytes to thrombin, J. Cell Biol. 96: 282–285.PubMedCrossRefGoogle Scholar
  5. Bar-Shavit, R., Kahn, A., Wilner, G. D., and Fenton, W., II, 1983b, Monocyte chemotaxis: Stimulation by specific exosite region in thrombin, Science 220: 728–731.PubMedCrossRefGoogle Scholar
  6. Bar-Shavit, R., Kahn, A. J., Fenton, J. W., II, and Wilner, G. D., 1983e, Receptor-mediated chemotactic response of macrophages to thrombin, Lab. Invest. 49: 702–707.PubMedGoogle Scholar
  7. Bar-Shavit, Z., Teitelbaum, S. L., Reitsman, P., Hall, A., Pegg, L. E., Trial, J. A., and Kahn, A. J., 1983d, Induction of monocyte differentiation and bone resorption by 1,25dihydroxyvitamin D3, Proc. Natl. Acad. Sci. USA 80: 5907–5911.PubMedCrossRefGoogle Scholar
  8. Bar-Shavit, R., Kahn, A., Mudd, M. S., Wilner, G. D., Mann, K. G., and Fenton, J. W., II, 1984, Thrombin chemotactic domain is localized within a B-chain CNBr fragment, Biochemistry 23: 397–400.PubMedCrossRefGoogle Scholar
  9. Bar-Shavit, R., Bing, D. H., Kahn, A. J., and Wilner, G. D., 1985, Thrombin-mediated chemotaxis: Relationship of ligand structure to biological activity, in: UCLA Symposia on Molecular and Cellular Biology (M. P. Czech and C. R. Kahn, eds.), Liss, New York, Vol. 23, pp. 329–338.Google Scholar
  10. Bar-Shavit, R., Kahn, A. J., Mann, K. G., and Wilner, G. D., 1986a, Identification of a thrombin sequence with growth factor activity on macrophages, Proc. Natl. Acad. Sci. USA 83: 976–980.PubMedCrossRefGoogle Scholar
  11. Bar-Shavit, R., Kahn, A. J., Mann, K. G., and Wilner, G. D., 1986b, Growth promoting effects of esterolytically inactive thrombin, J. Cell Biochem. 32: 261–272.PubMedCrossRefGoogle Scholar
  12. Bar-Shavit, R., Hruska, K. A., Kahn, A. J., and Wilner, G. D., 1987, Thrombin chemotactic stimulation of HL 60 cells. Studies on thrombin responsiveness as a function of differentiation, J. Cell Physiol. 131: 255–261.PubMedCrossRefGoogle Scholar
  13. Bar-Shavit, R., Eldor, A., and Vlodaysky, I., 1989, Binding of thrombin to subendothelial extracellular matrix: Protection and expression of functional properties, J. Clin. Invest. 84: 1096–1104.PubMedCrossRefGoogle Scholar
  14. Bar-Shavit, R., Benezra, M., Eldor, A., Hy-Am, E., Fenton, J. W., II, and Vlodaysky, I., 1990, Thrombin immobilized to extracellular matrix is a potent mitogen for vascular smooth muscle cells: Nonenzymatic mode of action, Cell Regul. 1: 453–463.PubMedGoogle Scholar
  15. Bar-Shavit, R., Sahbah, V., Lampugnani, M. G., Marchisio, P. C., Fenton, J. W., II, Vlodaysky, I., and Dejana, E., 1991, An Arg-Gly-Asp sequence within thrombin promotes endothelial cell adhesion, J. Cell Biol. 112: 335–344.PubMedCrossRefGoogle Scholar
  16. Bashkin, P., Klagsbrun, M., Doctrow, S., Svahn, C. M., Folkman, J., and Vlodaysky, I., 1989, Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparanase and heparin-like molecules, Biochemistry 28: 1737–1743.PubMedCrossRefGoogle Scholar
  17. Bernfield, M. R., Banerjee, S. D., and Cohn, R. H., 1972, Dependence of salivary epithelial morphology and branching morphogenesis upon acid mucopolysaccharide protein of the epithelial surface, J. Cell Biol. 52: 674–689.PubMedCrossRefGoogle Scholar
  18. Bing, D. H., Laura, R., Robinson, D. J., Furie, B., Furie, B. C., and Feldman, R. J., 1981, Structure-function relationship of thrombin based on computer generated three dimensional model of the B-chain of bovine thrombin, Ann. N.Y. Acad. Sci. 370: 496–501.PubMedCrossRefGoogle Scholar
  19. Bing, D. H., Feldman, R. J., and Fenton, J. W., II, 1986, A computer-generated three-dimensional model of the B chain of bovine α-thrombin, Ann. N.Y. Acad. Sci. 485: 104–119.PubMedCrossRefGoogle Scholar
  20. Butkowski, R. J., Elion, J., Downing, M. R., and Mann, K. G., 1977, Primary structure of human prethrombin 2 and α-thrombin, J. Biol. Chem. 252: 4942–4957.PubMedGoogle Scholar
  21. Camussi, G., Afglietta, M., Malavasi, F., Tetta, C., Piacibello, W., Sanavio, F., and Bussolino, F., 1983, The release of activating factor from human endothelial cells in culture, J. Immunol. 131: 2397–2403.PubMedGoogle Scholar
  22. Carney, D. H., Scott, L., Gordon, E. A., and LaBelle, E. F., 1985, Neomycin inhibits thrombin-stimulated phosphoinositide turnover and initiation of DNA synthesis: Role of phosphoinositides in thrombin mitogenesis, Cell 42: 479–488.PubMedCrossRefGoogle Scholar
  23. Castellot, J. J., Jr., Favreau, L. V., Karnovsky, M. J., and Rosenberg, R. D., 1982, Inhibition of vascular smooth muscle cell growth by endothelial cell-derived heparin, J. Biol. Chem. 257: 11256–11260.PubMedGoogle Scholar
  24. Chambard, J. C., Franchi, A., Le Cam, A., and Pouyssegur, J., 1983, Growth factor-stimulated protein phosphorylation in G0/G1-arrested fibroblasts, J. Biol. Chem. 258: 1706–1713.PubMedGoogle Scholar
  25. Chen, L. B., and Buchanan, J. M., 1975, Mitogenic activity of blood components. I. Thrombin and prothrombin, Proc. Natl. Acad. Sci. USA 72: 131–135.PubMedCrossRefGoogle Scholar
  26. Cheresh, D. A., 1987, Human endothelial cells synthesize and express an Arg-Gly-Asp directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor, Proc. Natl. Acad. Sci. USA 84: 6471–6475.PubMedCrossRefGoogle Scholar
  27. Clohisy, D. R., Erdman, J. M., and Wilner, G. D., 1990, Thrombin binds to murine bone marrow-derived macrophages and entrances colony stimulating factor-l-driven mitogenesis, J. Biol. Chem. 265: 7729–7732.PubMedGoogle Scholar
  28. Collins, S. J., Ruscetti, F. W., Gallagher, R. E., and Gallo, R. C., 1978, Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds, Proc. Natl. Acad. Sci. USA 75: 2458–2462.PubMedCrossRefGoogle Scholar
  29. Colman, R. W., Marder, V. J., and Salzman, E. W., and Hirsh, J., 1987, Introduction, in: Hemostasis Thrombosis, basic principles and clinical practice, 2nd ed. ( R. W. Colman, J. Hirsh, V. J. Marder, and E. W. Salzman, eds.), Lippincott, Philadelphia, pp. 3–17.Google Scholar
  30. Craik, C. S., Sprang, C., Fletterick, R., and Rutter, R., 1982, Intron–exon splice junctions map at protein surfaces, Nature 299: 180–182.PubMedCrossRefGoogle Scholar
  31. de Groot, P. G., Reinders, J. H., and Sixma, J. J., 1987, Perturbation of human endothelial cells by thrombin or PMA changes the reactivity of their extracellular matrix toward platelets, J. Cell Biol. 104: 697–704.PubMedCrossRefGoogle Scholar
  32. Dejana, E., Colella, S., Confiirti, G., Abbadini, M., Gaboli, M., and Marchisio, P. C., 1988, Fibronectin and vitronectin regulate the organization of their respective Arg-GlyAsp adhesion receptors in cultured human endothelial cells, J. Cell Biol. 107: 1215–1223.PubMedCrossRefGoogle Scholar
  33. DiColerto, P. E., and Bowen-Pope, D. F., 1983, Cultured endothelial cells produce a platelet-derived growth factor-like protein, Proc. Natl. Acad. Sci. USA 80: 1919–1923.CrossRefGoogle Scholar
  34. Dodson, J. W., 1963, On the nature of tissue interactions in embryonic skin, Exp. Cell Res. 31: 233–240.CrossRefGoogle Scholar
  35. Elion, J., Downing, M. R., Butkowski, R. J., and Mann, K. G., 1977, Human and bovine thrombin sequence: Comparison to other serine proteases, in: Chemistry and Biology of Thrombin (R. L. Lundblad, J. W. Fenton, II, and K. G. Mann, eds.), Ann Arbor Science, Ann Arbor, p. 97.Google Scholar
  36. Folkman, J., Klagsbrun, M., Sasse, J., Vadzinski, M., Ingber, D., and Vlodaysky, I., 1988, A heparin binding angiogenic protein, basic fibroblast growth factor, is stored within basement membrane, Am. J. Pathol. 130: 393–399.PubMedGoogle Scholar
  37. Furie, B., Bing, D. H., Feldman, R. J., Robinson, D. J., Burnier, J. P., and Furie, B. C., 1982, Computer-generated models of blood coagulation factor Xa, factor IXa, and thrombin based upon structural homology with other serine proteases, J. Biol. Chem. 257: 3875.PubMedGoogle Scholar
  38. Galdal, K. S., Evensen, S. A., and Nilsen, E., 1985, The effect of thrombin on fibronectin in cultured human cells, Thromb. Res. 37: 583–593.PubMedCrossRefGoogle Scholar
  39. Garcia, J. G. N., Siflinger-Birnboim, A., Bixios, R., Del Vecchio, P. J., Fenton, J. W., and Malik, A. B., 1986, Thrombin induced increase in albumin permeability across the endothelium, J. Cell Physiol. 128: 96–104.PubMedCrossRefGoogle Scholar
  40. Gelehrber, T. D., and Sznycer-Laszuk, R., 1986, Thrombin induction of plasminogen activa- tor-inhibitor in cultured human endothelial cells, J. Clin. Invest. 77: 165–169.CrossRefGoogle Scholar
  41. Glenn, K. C., Carney, D. H., Fenton, J. W., II, and Cunningham, D. D., 1980, Thrombin active site regions required for fibroblast receptor binding and initiation of cell division, J. Biol. Chem. 255: 6609–6616.PubMedGoogle Scholar
  42. Gordon, M. Y., Riley, G. P., Watt, S. M., and Greaves, M. F., 1987, Compartmentalization of a haemopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment, Nature 326: 403–405.PubMedCrossRefGoogle Scholar
  43. Gospodarowicz, D., Vlodaysky, I., and Savion, N., 1980a, The extracellular matrix and the control of proliferation of vascular endothelial and vascular smooth muscle cells, J. Supramol. Struct. 13: 339–372.PubMedCrossRefGoogle Scholar
  44. Gospodarowicz, D., Delgado, D., and Vlodaysky, I., 1980b, Permissive effect of the extra-cellular matrix on cell proliferation in vitro, Proc. Natl. Acad. Sci. USA 77: 4094–4098.PubMedCrossRefGoogle Scholar
  45. Gospodarowicz, D., Gonzales, R., and Fujii, D. K., 1983, Are factors originating from serum, plasma or cultured cells involved in the growth promoting effect of the extracellular matrix produced by cultured bovine corneal endothelial cells? J. Cell Physiol. 114: 191–202.PubMedCrossRefGoogle Scholar
  46. Gospodarowicz, D., Lepine, J., Massoglia, S., and Wood, I., 1984, Comparison of the ability of basement membranes produced by corneal endothelial and mouse derived endodermal PF-HR-9 cells to support the proliferation and differentiation of bovine kidney tubule epithelial cells in vitro, J. Cell Biol. 99: 947–1961.PubMedCrossRefGoogle Scholar
  47. Greenberg, M. E., and Ziff, E. B., 1984, Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene, Nature 311: 433–438.PubMedCrossRefGoogle Scholar
  48. Haigler, H. T., Maxfield, F. R., Willingham, M. C., and Pastan, I., 1980, Dansylcadaverine inhibits internalization of 125I-epidermal growth factor, J. Biol. Chem. 255: 1239–1241.PubMedGoogle Scholar
  49. Hanson, S. R., and Harker, L. A., 1988, Interruption of acute platelet-dependent thrombosis by the synthetic antithrombin D-phenylalanyl-L-prolyl-arginyl-chloromethyl ketone, Proc. Natl. Acad. Sci. USA 85: 3184–3188.PubMedCrossRefGoogle Scholar
  50. Harlan, J. M., Thompson, P. J., Ross, R. R., and Bowen-Pope, D. F., 1986, Thrombin induces release of platelet-derived growth factor like molecule(s) by cultured human endothelial cells, J. Cell Biol. 103: 1125–1133.CrossRefGoogle Scholar
  51. Honma, Y., Takenaga, K., Kasukabe, T., and Hozumi, M., 1980, Induction of differentiation of cultured human promyelocytic leukemia cells by retinoids, Biochem. Biophys. Res. Commun. 95: 507–512.PubMedCrossRefGoogle Scholar
  52. Horowitz, A., Duggan, K., Greggs, R., Decker, C., and Buck, C., 1985, The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin, J. Cell Biol. 101: 2134–2144.CrossRefGoogle Scholar
  53. Hynes, R. O., 1987, Integrins: A family of cell surface receptors, Cell 48: 549–555.PubMedCrossRefGoogle Scholar
  54. Jaffe, E. A., Hoyer, L. W., and Nachman, R. L., 1974, Synthesis of von Willebrand factor by culture of human endothelial cells, Proc. Natl. Acad. Sci. USA 71: 1906–1909.PubMedCrossRefGoogle Scholar
  55. Jolyon, J., 1986, The kinetics of inhibition of a-thrombin in human plasma, J. Biol. Chem. 261: 10313–10318.Google Scholar
  56. Kajiji, S., Tamura, R. N., and Quaranta, V., 1989, A novel integrin (αEβ4) from human epithelial cells suggests a fourth family of integrin adhesion receptors, EMBO J. 8: 673–680.PubMedGoogle Scholar
  57. Kaplan, K., 1982, Interaction of platelets with endothelial cells, in: Pathobiology of the Endothelial Cell ( H. L. Nofssel and H. J. Vogel, eds.), Academic Press, New York, pp. 337–349.Google Scholar
  58. Kindy, M. S., and Sonenshein, G. E., 1986, Regulation of oncogene expression in cultured aortic smooth muscle cells: Posttranscriptional control of c-myc mRNA, J. Biol. Chem. 261: 12865–12868.Google Scholar
  59. Klagsbrun, M., and Edelman, E. R., 1989, Biological and biochemical properties of fibroblast growth factor. Implications for the pathogenesis of atherosclerosis, Arteriosclerosis 9: 269–278.PubMedCrossRefGoogle Scholar
  60. Knudsen, B. S., Silverstein, R. L., Leung, L. L. K., Harpel, P. C., and Nachman, R. L., 1986, Binding of plasminogen to extracellular matrix, J. Biol. Chem. 261: 10765–10771.PubMedGoogle Scholar
  61. Kramer, H. R., and Vogel, K. G., 1984, Selective degradation of basement membrane macromolecules by metastatic cells, J. Natl. Cancer Inst. 72: 889–899.PubMedGoogle Scholar
  62. Kruijer, W., Copper, J. A., Hunter, T., and Verma, I. M., 1984, Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein, Nature 312: 711–716.PubMedCrossRefGoogle Scholar
  63. Laiho, M., and Keski-Oja, J., 1989, Growth factors in the regulation of pericellular proteolysis: A review, Cancer Res. 49: 2533–2553.PubMedGoogle Scholar
  64. Languino, L. R., Collela, S., Zanetti, A., Andrieux, J. J., Pyckewaert, M. H., Charon, P. C., Marchisio, E. F., Plow, M. H., Ginsberg, G., Margurie, G., and Dejana, E., 1989, Fibrinogen-endothelial cell interaction in-vitro: A pathway mediated by an Arg-GlyAsp recognition specificity, Blood 73: 734–742.PubMedGoogle Scholar
  65. Laposada, M., Dovuarsky, D. K., and Solkin, H. S., 1983, Thrombin induced gap formation in confluent endothelial cell monolayers, Blood 62: 549–556.Google Scholar
  66. Lawler, J., Weinstein, R., and Hynes, O. R., 1988, Cell attachment to thrombospondin: The role of Arg-Gly-Asp, calcium and integrin receptors, J. Cell Biol. 107: 351.CrossRefGoogle Scholar
  67. Lerner, R. G., Chenong, L. C., and Nelson, I. C., 1979, Thrombin induced endothelial cell retraction, Thromb. Haemostas. 42: 244–247.Google Scholar
  68. Libby, P., Warner, S. J. C., and Friedman, G. B., 1988, Interleukin 1: A mitogen for human vascular smooth muscle cells that induces the release of growth inhibitory prostanoids, J. Clin. Invest. 81: 487–498.PubMedCrossRefGoogle Scholar
  69. Loskutoff, D. J., 1979, Effect of thrombin on the fibrinolytic activity of cultured bovine endothelial cells, J. Clin. Invest. 64: 329–340.PubMedCrossRefGoogle Scholar
  70. Lotem, J., and Sachs, L., 1979, Regulation of normal differentiation in mouse and human myeloid leukemia cells by phorbol esters and the mechanism of tumor protection, Proc. Natl. Acad. Sci. USA 76: 5158–5162.PubMedCrossRefGoogle Scholar
  71. Mann, K. G., 1987, The assembly blood clotting complexes on membranes, Trends Biochem. Sci. 12: 229–234.CrossRefGoogle Scholar
  72. Martinet, Y., Bitterman, P. B., Mornex, J. F., Grotendorst, G. R., Martin, G. R., and Crystal, R. G., 1986, Activated human monocytes express c-sis proto-oncogene and release a mediator showing PDGF-like activity, Nature 319: 158–160.PubMedCrossRefGoogle Scholar
  73. Muller, R., Bravo, R., Bruckhardt, J., and Curran, T., 1984, Induction of c-fos gene and protein by growth factors precedes activation of c-myc, Nature 312: 716–720.PubMedCrossRefGoogle Scholar
  74. Neurath, H., 1984, Evolution of proteolytic enzymes, Science 224: 350–357.PubMedCrossRefGoogle Scholar
  75. Neurath, H., 1986, The versatility of proteolytic enzymes, J. Cell Biochem. 32: 35–49.PubMedCrossRefGoogle Scholar
  76. Olivecrona, T., Egelrud, T., Iverius, P. H., and Lindahl, V., 1971, Evidence for an anionic binding of lipoprotein lipase to heparin, Biochem. Biophys. Res. Commun. 45: 524–529.CrossRefGoogle Scholar
  77. Paris, S., and Pouyssegur, J., 1984, Growth factors activate the Na+/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+, J. Biol. Chem. 259: 10989–10994.PubMedGoogle Scholar
  78. Pearson, J. D., and Gordon, J. L., 1979, Vascular endothelial and smooth muscle cells in culture selectively release adenine nucleotides, Nature 281: 384–386.PubMedCrossRefGoogle Scholar
  79. Perdue, J. F., Lubenskyi, W., Kivity, E., Sonder, S. A., and Fenton, J. W., II, 1981, Protease mitogenic response of chick embryo fibroblasts and receptor binding/processing of human thrombin, J. Biol. Chem. 256: 2767–2776.PubMedGoogle Scholar
  80. Plow, E. F., McEver, R. P., Coller, B. S., Woods, V. L., Jr., and Marguerie, G. A., 1985, Related binding mechanisms for fibronectin, von Willebrand factor and thrombin-stimulated human platelets, Blood 66: 724–727.PubMedGoogle Scholar
  81. Ponte, P., Gonzalez-DeWhitt, P., Schilling, J., Miller, J., Hsu, D., Greenberg, B., Davis, K., Wallace, W., Lieberburg, I., Fuller, F., and Cordell, B., 1988, A new A4 amyloid in mRNA contains a domain homologous to a serine proteinase inhibitor, Nature 331:525–527.PubMedCrossRefGoogle Scholar
  82. Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M., 1984, Human endothelial cells in culture produce BAF when stimulated with thrombin, Proc. Natl. Acad. Sci. USA 81: 3534–3538.PubMedCrossRefGoogle Scholar
  83. Pytela, R., Pierschbacher, M. D., and Ruoslahti, E., 1985a, Identification and isolation of 140kd cell surface glycoprotein with properties expected of a fibronectin receptor, Cell 40: 191–198.PubMedCrossRefGoogle Scholar
  84. Pytela, R., Pierschbacher, M. D., and Ruoslahti, E., 1985b, A 125/155 kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronection, Proc. Natl. Acad. Sci. USA 82: 5766–5770.PubMedCrossRefGoogle Scholar
  85. Reddi, A. H., and Anderson, W. A., 1976, Collagenous bone matrix induced endochondral ossification and hemopoiesis, J. Cell Biol. 68: 557–572.CrossRefGoogle Scholar
  86. Roberts, R., Gallagher, J., Spooncer, S., Allen, T. D., Bloomfield, F., and Dexter, T. M., 1988, Heparin-sulphate bound growth factors: A mechanism for stromal cell mediated haemopoiesis, Nature 332: 376–378.PubMedCrossRefGoogle Scholar
  87. Rogelj, S., Klagsbrun, M., Atzmon, R., Kurokawa, M., Haimovitz, A., Fuks, Z., and Vlodaysky, I., 1989, Basic fibroblast growth factor is an extracellular matrix component required for supporting the proliferation of vascular endothelial cells and the differentiation of PC 12 cells, J. Cell Biol. 109: 824–831.CrossRefGoogle Scholar
  88. Rosenberg, R. D., 1977, Biologic actions of heparin, Semin. Hematol. 14: 427–440.PubMedGoogle Scholar
  89. Rosenberg, R. D., and Damus, D. S., 1973, The purification and mechanism of action of human anti thrombin-heparin cofactor, J. Biol. Chem. 248: 6490–6505.PubMedGoogle Scholar
  90. Ross, R., 1986, The pathogenesis of atherosclerosis—an update, N. Engl. J. Med. 314: 488–499.PubMedCrossRefGoogle Scholar
  91. Ruggeri, Z. M., Bader, R., and DeMarco, L., 1982, Glanzmann’s thrombasthenia: Deficient binding of von Willebrand factor to thrombin-stimulated platelets, Proc. Natl. Acad. Sci. USA 79: 6038–6041.PubMedCrossRefGoogle Scholar
  92. Ruoslahti, E., and Pierschbacher, M. D., 1987, New perspectives in cell adhesion: RGD and integrins, Science 238: 491–497.PubMedCrossRefGoogle Scholar
  93. Savion, N., Isaacs, J. D., Gospodarowicz, D., and Shuman, M. A., 1981, Internalization and degradation of thrombin and upregulation of thrombin-binding sites in corneal endothelial cells, J. Biol. Chem. 256: 4514–4519.PubMedGoogle Scholar
  94. Scheinberg, I. H., 1982, Scatchard plots, Science 215: 312–314.PubMedCrossRefGoogle Scholar
  95. Smith, J. C., Singh, J. P., Lillquist, J. S., Goon, D. S., and Stiles, C. D., 1982, Growth factors adherent to cell substrate are mitogenically active in situ, Nature 296: 154–156.PubMedCrossRefGoogle Scholar
  96. Sporn, L. A., Marder, V. J., and Wagner, D. D., 1987, von Willebrand factor released from Wiebel-Palade bodies binds more avidly to extracellular matrix than that secreted constitutively, Blood 69: 1531–1534.PubMedGoogle Scholar
  97. Stern, D., Nawroth, P., Handley, D., and Kisiel, W., 1985, An endothelial cell-dependent pathway of coagulation, Proc. Natl. Acad. Sci. USA 82: 2523–2527.PubMedCrossRefGoogle Scholar
  98. Taylor, S., and Folkman, J., 1982, Protamine is an inhibitor of angiogenesis, Nature 297: 307–312.PubMedCrossRefGoogle Scholar
  99. Tollefsen, D. M., Majerus, P. W., and Blank, M. K., 1982, Heparin cofactor II, J. Biol. Chem. 257: 2162–2169.Google Scholar
  100. Tushinski, R. J., Oliver, I. T., Guilbert, L. J., Tynan, P. W., Warner, J. R., and Stanley, E. R., 1982, Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy, Cell 28: 71–81.PubMedCrossRefGoogle Scholar
  101. Vlodaysky, I., Liu, G. M., and Gospodarowicz, D., 1980, Morphological appearance, growth behavior and migratory activity of human tumor cells maintained on extracellular matrix vs plastic, Cell 19: 607–616.CrossRefGoogle Scholar
  102. Vlodaysky, I., Folkman, J., Sullivan, R., Fridman, R., Ishai-Michaeli, R., Sasse, J., and Klagsbrun, M., 1987, Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix, Proc. Natl. Acad. Sci. USA 84: 2292–2296.CrossRefGoogle Scholar
  103. Wagner, S. L., Gededdes, J. W., Cotman, C. W., Lau, A. L., Gurewitz, D. G., Isackson, P. J., and Cunningham, D. D., 1989, Protease nexin-1, an antithrombin with neurite outgrowth activity is reduced in Alzheimer disease, Proc. Natl. Acad. Sci. USA 86: 8284–8288.PubMedCrossRefGoogle Scholar
  104. Wayner, E. A., and Carter, W. G., 1987, Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique and common subunits, J. Cell Biol. 105: 1873–1884.PubMedCrossRefGoogle Scholar
  105. Weksler, B. B., Ley, C. W., and Jaffe, E. A., 1978, Stimulation of endothelial cell prostacyclin (PGI2) production by thrombin, trypsin and the ionophore A23187, J. Clin. Invesl. 62: 923–930.CrossRefGoogle Scholar
  106. White, J. R., Naccache, P. H., and Sha’afi, R. I., 1983, Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils, J. Biol. Chem. 258: 14041–14047.PubMedGoogle Scholar
  107. Wilner, G. B., Danitz, M. P., Mudd, M. S., Hsieh, K. H., and Fenton, J. W., II, 1981, Selective immobilization of α-thrombin by surface bound fibrin, J. Lab. Clin. Med. 97: 403–407.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Rachel Bar-Shavit
    • 1
  • Miriam Benezra
    • 1
  • Valerie Sabbah
    • 1
  • Elisabetta Dejana
    • 2
  • Israel Vlodavsky
    • 1
  • George D. Wilner
    • 3
  1. 1.Department of OncologyHadassah University HospitalJerusalemIsrael
  2. 2.Instituto di Ricerche FarmacologicheMilanoItaly
  3. 3.Department of Medicine, Division of HematologyThe Albany Medical CollegeAlbanyUSA

Personalised recommendations