Advertisement

Quantum Transport in Small Structures

  • David K. Ferry
  • Robert O. Grondin
Part of the Microdevices book series (MDPF)

Abstract

Nearly all of the transport that has been dealt with in treating devices has its conceptual basis in the Boltzmann transport equation. It is perhaps worthwhile at this point to actually summarize the various approximations and limitations that impact this equation. In general, transport processes are viewed on a coarse-grained time scale tτ c , τ m , etc., so that many completed, independent collisions occur in the passage of a carrier through the system. In addition, each collision is treated as an irreversible process which is completed prior to the next one, and is (a) local in space (collision spheres do not overlap in space), (b) local in time (instantaneous collisions), (c) independent of any driving fields or other scattering processes (no multiple scattering effects and no field acceleration during the collision), and (d) at low frequency.

Keywords

Density Matrix Wigner Function Small Structure Applied Bias Wigner Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Barker, J. Phys. C 6, 2663 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    K. K. Thornber, Solid-State Electron. 21, 259 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    T. N. Theis, J. R. Kirtley, D. J. DiMaria, and D. W. Dong, Phys. Rev. Lett. 50, 750 (1983).ADSCrossRefGoogle Scholar
  4. 4.
    T. N. Theis, D. J. DiMaria, J. R. Kirtley, and D. W. Dong, Phys. Rev. Lett. 53, 1445 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    D. J. DiMaria, T. N. Theis, J. R. Kirtley, F. L. Pesavento, D. W. Dong, and S. D. Brorson, J. Appl. Phys. 57, 1214 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    M. V. Fischetti, Phys. Rev. Lett. 53, 1755 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    For example, see The Physics of SiO 2 and Its Interfaces (S. T. Pantelides, ed.), Pergamon Press, New York (1978).Google Scholar
  8. 8.
    W. Porod and D. K. Ferry, Phys. Rev. Lett. 54, 1189 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    W. Porod and D. K. Ferry, Physica 134B, 137 (1985).Google Scholar
  10. 10.
    M. V. Fischetti, D. J. DiMaria, S. D. Brorson, T. N. Theis, and J. R. Kirtley, Phys. Rev. B 31, 8124 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    T. L. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, Appl. Phys. Lett. 43, 588 (1983); 45, 1319 (1984).Google Scholar
  12. 12.
    E. O. Kane, in: Semiconductors and Semimetals, Vol. 1, p. 75 (R. H. Willardson and A. C. Beer, eds.), Academic Press, New York (1966).CrossRefGoogle Scholar
  13. 13.
    B. Ricco and M. Ya. Azbel, Phys. Rev. B 29, 1970 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    E. Wigner, Phys. Rev. 40, 749 (1932).ADSCrossRefGoogle Scholar
  15. 15.
    J. R. Barker, Physica 134B, 22 (1985).Google Scholar
  16. 16.
    U. Ravaioli, M. A. Osman, W. Pötz, N. Kluksdahl, and D. K. Ferry, Physica 134B, 36 (1985); N. C. Kluksdahl, A. M. Kriman, C. Ringhofer, and D. K. Ferry, Solid-State Electron. 31, 743 (1988); N. C. Kluksdahl, A. M. Kriman, and D. K. Ferry, Superlatt. Microstruct. 4, 127 (1988); N. C. Kluksdahl, A. M. Kriman, D. K. Ferry, and C. Ringhofer, Phys. Rev. B 39, 7720 (1989); N. C. Kluksdahl, A. M. Kriman, and D. K. Ferry, Solid-State Electron. 32, 1273 (1989).Google Scholar
  17. 17.
    M. Büttiker, Phys. Rev. B 33, 3020 (1986).ADSCrossRefGoogle Scholar
  18. 18.
    W. Frensley, Phys. Rev. Lett. 57, 2853 (1986); Solid-State Electron. 31, 739 (1988).Google Scholar
  19. 19.
    R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    H. Mori, Prog. Theor. Phys. 33, 423 (1965).ADSMATHCrossRefGoogle Scholar
  21. 21.
    J. J. Niez and D. K. Ferry, Phys. Rev. B 28, 889 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    N. Hashitsume, M. Mori, and T. Takahashi, J. Phys. Soc. Jpn. 55, 1887 (1986).ADSCrossRefGoogle Scholar
  23. 23.
    S. W. Lovesey, Condensed Matter Physics: Dynamic Correlations, Benjamin/Cummings, Reading, MA (1980).Google Scholar
  24. 24.
    D. N. Zubarev, Nonequilibrium Statistical Mechanics, Consultants Bureau, New York (1974).Google Scholar
  25. 25.
    V. P. Kalashnikov, Physica 48, 93 (1970).MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    D. K. Ferry, J. Phys. Colloq. 42, C7–253 (1981).CrossRefGoogle Scholar
  27. 27.
    J. J. Niez, K. S. Yi, and D. K. Ferry, Phys. Rev. B 28, 1988 (1983).ADSCrossRefGoogle Scholar
  28. 28.
    P. A. Lee and D. S. Fisher, Phys. Rev. Lett. 47, 882 (1981).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    W. Skocpol, in: Physics and Fabrication of Microstructures (M. Kelly and C. Weissbuch, eds.), Springer-Verlag, Berlin (1986).Google Scholar
  31. 31.
    W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    J. R. Barker, in: Physics of Nonlinear Transport in Semiconductors (D. K. Ferry, J. R. Barker, and C. Jacobini, eds.), Springer Science+Business Media New York (1979).Google Scholar
  33. 33.
    J. R. Barker, Solid-State Electron. 21, 197 (1978).ADSCrossRefGoogle Scholar
  34. 34.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York (1975).MATHGoogle Scholar
  35. 35.
    I. B. Levinson, Sov. Phys. JETP 30, 362 (1970).MathSciNetADSGoogle Scholar
  36. 36.
    N. Pottier, Physica A117, 243 (1983).ADSGoogle Scholar
  37. 37.
    J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1947).MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, D. M. Tennant, and A. D. Stone, Phys. Rev. Lett. 56, 2865 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David K. Ferry
    • 1
  • Robert O. Grondin
    • 1
  1. 1.College of Engineering and Applied Science Center for Solid State Electronics ResearchArizona State UniversityTempeUSA

Personalised recommendations