Alloys and Superlattices

  • David K. Ferry
  • Robert O. Grondin
Part of the Microdevices book series (MDPF)


In recent years, the concepts of band-gap engineering have become widespread especially for their impact on performance modifications of electron devices and for their suggestion of new methods of device operation. This has primarily arisen from the ability to modify material characteristics through alloying and through the use of superlattices and quantum wells to tune energy levels. If there is a single reason for the advent of alloys, it is the advantages that are offered by the tuning of the fundamental energy gaps (between conduction and valence bands) of the material system to some desired value. This single parameter governs the electrical and optical properties through the intrinsic carrier densities and the fundamental absorption edge. As the investigations of semiconductor materials has progressed, studies of the simple elements Si and Ge moved to the more interesting compounds of GaAs, AlAs, etc., and then to alloys of these compounds. Interestingly enough, the use of molecular-beam epitaxy has once again allowed interesting alloys of Si and Ge to be investigated.


Valence Band Band Structure Lower Conduction Band Random Alloy Virtual Crystal Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. A. Harrison,Electronic Structure and the Properties of Solids,W. H. Freeman, San Francisco (1980).Google Scholar
  2. 2.
    J. C. Slater and G. F. Koster, Phys. Rev. 94,1498 (1954).ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    J. C. Phillips,Phys. Rev. Lett. 20,550 (1968).ADSCrossRefGoogle Scholar
  4. 4.
    J. C. Phillips, Bonds and Bands in Semiconductors,Academic Press, New York (1973).Google Scholar
  5. 5.
    J. A. Van Vechten,Phys. Rev. 182,891 (1969).ADSCrossRefGoogle Scholar
  6. 6.
    J. A. Van Vechten,Phys. Rev. 187,1007 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    D. Penn,Phys. Rev. 128,2093 (1962).ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    K. C. Pandey and J. C. Phillips, Solid St. Commun. 14,439 (1976).CrossRefGoogle Scholar
  9. 9.
    J. W. Harrison and J. R. Hauser, Phys. Rev.B 13,5347 (1976).ADSCrossRefGoogle Scholar
  10. 10.
    P. A. Flinn,Phys. Rev. 104,350 (1956).ADSCrossRefGoogle Scholar
  11. 11.
    D. K. Ferry,Phys. Rev.B 14,5364 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    G. L. Hall,Phys. Rev. 116,604 (1959).ADSCrossRefGoogle Scholar
  13. 13.
    J. A. Van Vechten and T. K. Bergstresser, Phys. Rev.B 1, 3351 (1970).ADSCrossRefGoogle Scholar
  14. 14.
    J. C. Woolley, C. M. Gillet, and J. A. Evans, Proc. Phys. Soc. London, 77, 700 (1961).ADSCrossRefGoogle Scholar
  15. 15.
    T. Y. Wu and G. L. Pearson, J. Phys. Chem. Sol. 33, 409 (1972).ADSCrossRefGoogle Scholar
  16. 16.
    R. L. Moon, G. A. Antypas, and L. W. James, J. Electron. Mater. 3, 635 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    S. N. Grinyaev, M. A. Il’in, A. T. Lukomskii, V. A. Chalyshev, and V. M. Chupakhina, Soy. Phys. Semicond. 14,446 (1980).Google Scholar
  18. 18.
    J. A. Van Vechten,Phys. Rev. 170,773 (1968).ADSCrossRefGoogle Scholar
  19. 19.
    J. H. Marsh, P. A. Houston, and P. N. Robson, Inst. Phys. Conf. Ser. 56,621 (1981).Google Scholar
  20. 20.
    A. Pinczuk, J. M. Worlock, R. E. Nahory, and M. A. Pollack, Appl Phys. Lett. 33, 461 (1978).ADSCrossRefGoogle Scholar
  21. 21.
    J. C. Mikkelson and J. B. Boyce, Phys. Rev. Lett. 49,1412 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    A. Zunger and J. E. Jaffe, Phys. Rev. Lett. 51,662 (1984).ADSCrossRefGoogle Scholar
  23. 23.
    G. P. Srivastava, J. L. Martins, and A. Zunger, Phys. Rev. B 31,2561 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    J. L. Martins and A. Zunger, Phys. Rev. Lett. 56,1400 (1986).ADSCrossRefGoogle Scholar
  25. 25.
    A. A. Mbaye, A. Zunger, and D. M. Wood, Appl Phys. Lett. 49,782 (1986).ADSCrossRefGoogle Scholar
  26. 26.
    H. R. Jen, M. J. Cherng, and G. B. Stringfellow, Appl Phys. Lett. 48,1603 (1986).ADSCrossRefGoogle Scholar
  27. 27.
    T. S. Kuan, T. F. Kuech, W. I. Wang, and E. L. Wilkie, Phys. Rev. Lett. 54,201 (1985).ADSCrossRefGoogle Scholar
  28. 28.
    H. Nakayama and H. Fujita, Inst. Phys. Conf. Series 79,289 (1986); Proc. GaAs and Related Compounds Conf, Japan (1985).Google Scholar
  29. 29.
    A. A. Mbaye, L. G. Ferreira, and A. Zunger, Phys. Rev. Lett. 58,49 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    M. J. Cherng, Y. T. Cherng, H. R. Jen, P. Harper, R. M. Cohen, and G. B. Stringfellow, J. Electron. Mater. 15,79 (1986).ADSCrossRefGoogle Scholar
  31. 31.
    Z. I. Alferov, R. S. Vantanyan, V. I. Korol’kov, I. I. Mokan, V. P. Ulin, B. S. Yavich, and A. A. Yakovenko, Soy. Phys. Semicond. 16,567 (1982).Google Scholar
  32. 32.
    K. E. Newman and J. D. Dow, Phys. Rev.B 27,7495 (1983).ADSCrossRefGoogle Scholar
  33. 33.
    L. Makowski and M. Glicksman,J Phys. Chem. Solids 34,487 (1976).CrossRefGoogle Scholar
  34. 34.
    H. Kroemer,Crit. Rev. Solid St. Science 5,555 (1975).CrossRefGoogle Scholar
  35. 35.
    D. K. Ferry,Phys. Rev.B 17,912 (1978).ADSCrossRefGoogle Scholar
  36. 36.
    D. L. Smith, T. C. McGill, and J. N. Schulman, Appl Phys. Lett. 43,180 (1983).ADSCrossRefGoogle Scholar
  37. 37.
    G. C. Osbourn,J. Appl Phys. 53,1586 (1982).ADSCrossRefGoogle Scholar
  38. 38.
    J. M. Gibson, R. Hull, J. C. Bean, and M. M. J. Treacy, Appl Phys. Lett. 46,649 (1985).ADSCrossRefGoogle Scholar
  39. 39.
    I. J. Fritz, S. T. Picreaux, L. R. Dawson, T. J. Drummond, W. D. Laidig, and N. G. Anderson, Appl Phys. Lett. 46,967 (1985).ADSCrossRefGoogle Scholar
  40. 40.
    J. W. Matthews and A. E. Blakeslee, J. Crystal Growth 27,118 (1974).ADSGoogle Scholar
  41. 41.
    K. C. Haas, H. Ehrenreich, and B. Velicky, Phys. Rev.B 27,1099 (1983).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David K. Ferry
    • 1
  • Robert O. Grondin
    • 1
  1. 1.College of Engineering and Applied Science Center for Solid State Electronics ResearchArizona State UniversityTempeUSA

Personalised recommendations