An Introductory Review

  • David K. Ferry
  • Robert O. Grondin
Part of the Microdevices book series (MDPF)


Semiconductor technology has long been dependent on controlling or at least using phenomena that occur on very short time and space scales. Millimeter-wave devices such as Gunn diodes or impact avalanche transit-time diodes (IMPATTs) depend critically on controlling the phase shifts between particle currents and terminal voltage waveforms in frequency ranges where times of less than a picosecond can visibly alter device performance. Monolithic silicon metal-oxide semiconductor field-effect transistor (MOSFET) technology depends on creating an inversion layer whose width is on the order of 100 Å and in which purely quantum mechanical “size” effects can be seen. The above examples are old. Arguably we have been lucky in these millimeter-wave devices in that phenomena occurring on times which seemed to lie beyond the resolution of any foreseeable measurement system actually provided the base for working devices. In the MOSFET world these quantum effects did not provide a basis for any actual devices but merely complicated the understanding of certain parameters used in the device model. Technological advances have now created a situation however in which we can fabricate semiconductor structures of submicron and even nanometer dimension in which quantum and other “novel” physical mechanisms are used in device operation and other advances have simultaneously created situations in which it is possible to perform measurements with subpicosecond resolution.


Electron Drift Velocity Hartree Equation Bloch Oscillation Bloch State Intervalley Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ando, F. Stern, and A. B. Fowler, Rev. Mod. Phys. 54, 437 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    R. Dingle, Festkorperprobleme 15, 21 (1975).CrossRefGoogle Scholar
  3. 3.
    R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970).CrossRefGoogle Scholar
  5. 5.
    R. T. Bate, Bull. Am. Phys. Soc. 22, 407 (1977).Google Scholar
  6. 6.
    R. K. Reich, R. O. Grondin, D. K. Ferry, and G. J. Iafrate, IEEE Electron Dev. Lett. EDL-3, 381 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    Picosecond Electronics and Optoelectronics (G. A. Mourou, D. M. Bloom, and C.-H. Lee, eds.), Springer-Verlag, Berlin (1985).Google Scholar
  8. 8.
    P. A. Blakey, private communication.Google Scholar
  9. 9.
    W. Shockley, J. Appl. Phys. 9, 635 (1938).ADSCrossRefGoogle Scholar
  10. 10.
    S. Ramo, Proc.IRE 27, 584 (1939).CrossRefGoogle Scholar
  11. 11.
    J. D. Jackson, Classical Electrodynamics, Wiley, New York (1962).Google Scholar
  12. 12.
    W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism,2nd ed., Addison-Wesley, Reading, MA (1962).zbMATHGoogle Scholar
  13. 13.
    O. Madelung, Introduction to Solid State Theory, Springer-Verlag, Berlin (1978).CrossRefGoogle Scholar
  14. 14.
    J. R. Chelikowsky and M. L. Cohen,Phys. Rev. B 14, 556 (1976); see also M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, 2nd Ed., SpringerVerlag, Berlin (1988).Google Scholar
  15. 15.
    J. B. Gunn, Proc. IEEE 62, 823 (1974).CrossRefGoogle Scholar
  16. 16.
    B. K. Ridley, Quantum Processes in Semiconductors,Clarendon Press, Oxford (1982).Google Scholar
  17. 17.
    J. M. Ziman, Electrons and Phonons, Clarendon Press, Oxford (1960).zbMATHGoogle Scholar
  18. 18.
    C. Zener, Proc. R. Soc. A 145, 523 (1934).ADSCrossRefGoogle Scholar
  19. 19.
    L. Esaki, Proc. IEEE 62, 825 (1974).CrossRefGoogle Scholar
  20. 20.
    M. Büttiker, Phys. Rev. B 35, 4123 (1987).ADSCrossRefGoogle Scholar
  21. 21.
    E. O. Kane, in: Tunneling Phenomena in Solids (E. Burstein and S. Lundqvist, eds.), Springer Science+Business Media New York (1969).Google Scholar
  22. 22.
    K. Stevens, J. Phys. C 16, 3649 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    D. Bohm, Quantum Theory, Prentice Hall, Englewood Cliffs, NJ (1951).Google Scholar
  24. 24.
    L. A. MacColl, Phys. Rev. 40, 621 (1932).ADSCrossRefGoogle Scholar
  25. 25.
    M. Biittiker and R. Landauer, Phys. Rev. Lett. 49, 1739 (1982).ADSCrossRefGoogle Scholar
  26. 26.
    W. E. Hagstrom, Phys. Stat. Solidi (B) 116, K85 (1983).ADSCrossRefGoogle Scholar
  27. 27.
    N. Kluksdahl, A Wigner Function Study of Quantum Electronic Transport in Semiconductor Tunneling Structures, Ph.D. thesis, Arizona State University (1988).Google Scholar
  28. 28.
    B. N. Brockhouse, Phys. Rev. Lett. 2, 256 (1959).ADSCrossRefGoogle Scholar
  29. 29.
    J. L. T. Waugh and G. Dolling, Phys. Rev. 132, 2410 (1963).ADSCrossRefGoogle Scholar
  30. 30.
    P. Vogl, in: Physics of Nonlinear Transport in Semiconductors (D. K. Ferry, J. R. Barker, and C. Jacoboni, eds.), Springer Science+Business Media New York (1980).Google Scholar
  31. 31.
    W. Fawcett, in: Electrons in Crystalline Solids, International Atomic Energy Agency, Vienna (1973).Google Scholar
  32. 32.
    P. M. Smith, M. Inoue, and J. Frey, Appl. Phys. Lett. 37, 797 (1980); P. M. Smith, J. Frey, and P. Chatterjee, Appl. Phys. Lett. 39, 332 (1981).Google Scholar
  33. 33.
    T. H. Windhorn, Electron Drift Velocities at High Electric Fields in Gallium Arsenide and Indium Gallium Arsenide, Ph.D. thesis, University of Illinois (1982).Google Scholar
  34. 34.
    W. Fawcett and D. C. Herbert, J. Phys. C: Solid State Phys. 7, 1641 (1974).ADSCrossRefGoogle Scholar
  35. 35.
    G. E. Stillman,in: Gallium Arsenide and Related Compounds (Edinburgh) 1976 (C. Hilsum, ed.), The Institute of Physics, Bristol and London (1977).Google Scholar
  36. 36.
    A. G. Chynoweth in Semiconductors and Semimetals: Vol. 4, Physics of III-V Compounds (R. K. Willardson and A. C. Beer, eds.), Academic Press, New York (1968).Google Scholar
  37. 37.
    C. L. Anderson and C. R. Crowell, Phys. Rev. B 5, 2267 (1972).ADSCrossRefGoogle Scholar
  38. 38.
    T. P. Pearsall, F. Capasso, R. E. Nahory, M. A. Pollack, and J. R. Chelikowsky, Solid St. Elec., 21, 297 (1978).ADSCrossRefGoogle Scholar
  39. 39.
    T.P.Pearsall, Appl. Phys. Lett. 36, 218 (1980).ADSCrossRefGoogle Scholar
  40. 40.
    R. K. Mains, G. I. Haddad, and P.A. Blakey, IEEE Trans. Electron Devices ED-30, 1327 (1983).ADSCrossRefGoogle Scholar
  41. 41.
    G. E. Bulman, V. M. Robbins, K. F. Brennan, K. Hess and G. E. Stillman, in: Optical Communications Systems, Proc. Fifteenth National Science Foundation Grantee-User Meeting, MIT (1983).Google Scholar
  42. 42.
    W. N. Grant, Solid St. Elect. 16 1189 (1973).MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    I. Umebu, A. N. M. M. Choudhury, and P. N. Robson, AppL Phys. Lett. 36, 302 (1980).ADSCrossRefGoogle Scholar
  44. 44.
    A. G. R. Evans and P. N. Robson, Solid St. Elect. 17, 805 (1974).ADSCrossRefGoogle Scholar
  45. 45.
    T. H. Windhorn, L. W. Cook, and G. E. Stillman, IEEE Electron Dev. Lett. EDL-3, 18 (1982).CrossRefGoogle Scholar
  46. 46.
    P. M. Smith, Measurement of High Field Transport Properties of Semiconductors Using a Microwave Time-of-Flight Technique, Ph.D. thesis, Cornell (1982).Google Scholar
  47. 47.
    G. Hill and P. N. Robson, Solid St. Elec. 25, 589 (1982).ADSCrossRefGoogle Scholar
  48. 48.
    J. P.Nougier, Noise and diffusion of hot carriers, in: Physics of Nonlinear Transport in Semiconductors (D. K. Ferry, J. R. Barker, and C. Jacoboni, eds.), Plenum, New York (1980).Google Scholar
  49. 49.
    T. H. Glisson, R. A. Sadler, J. R. Hauser, and M. A. Littlejohn, Solid St. Elec. 23, 627 (1980).ADSCrossRefGoogle Scholar
  50. 50.
    J. G. Ruch and G. S. Kino, Phys. Rev. 174, 921 (1968).ADSCrossRefGoogle Scholar
  51. 51.
    R. Joshi and R. O. Grondin, Appl. Phys. Lett. 54, 2438 (1989).ADSCrossRefGoogle Scholar
  52. 52.
    P. E. Bauhahn, Properties of Semiconductor Materials and Microwave Transit-Time Devices, Ph.D. thesis, University of Michigan (1977).Google Scholar
  53. 53.
    C. Canali, F. Nava, and L. Reggiani, in: Hot Electron Transport in Semiconductors (L. Reggiani, ed.) Springer-Verlag, Berlin (1985).Google Scholar
  54. 54.
    W. Fawcett and H. D. Rees, Phys. Lett. A 29, 578 (1969).ADSCrossRefGoogle Scholar
  55. 55.
    J. Pozhela and A. Reklaitis, Sol. State Commun. 27, 1073 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David K. Ferry
    • 1
  • Robert O. Grondin
    • 1
  1. 1.College of Engineering and Applied Science Center for Solid State Electronics ResearchArizona State UniversityTempeUSA

Personalised recommendations