Advertisement

Surface Core Level Spectroscopy

  • Anders Flodström
  • Ralf Nyholm
  • Börje Johansson
Part of the Synchrotron Radiation Research book series (SRR, volume 1)

Abstract

After the discovery that core level binding energies are sensitive to the charge distribution of the valence electrons, core level photoelectron spectroscopy has become one of the main analytical techniques in physics and chemistry. For example, an increase in oxidation number is accompanied by stepwise changes in the core level binding energy. The core level chemical shifts observed for atoms in different charge states usually range from 0.5 to 5 eV. Under the acronym ESCA (electron spectroscopy for chemical analysis), Siegbahn and co-workers developed the technique with extensive studies of chemical shifts in solid compounds,1 and later in molecules.2 This work was performed with fixed photon energy sources, MgKa and AlKa primarily. The main objective driving the field was to develop excitation sources and kinetic-energy electron analyzers with improved resolution to detect smaller chemical shifts with increased precision.

Keywords

Core Level Surface Segregation Core Level Spectrum Core Hole Surface Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S. E. Karlsson, J. Lindgren, and B. Lindberg, Nova Acta Regiae Soc. Sci. Ups. 20, (1967).Google Scholar
  2. 2.
    K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Hedén, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and Y. Baer, ESCA Applied to Free Molecules, North-Holland, Amsterdam (1969).Google Scholar
  3. 3.
    R. H. Rithie, F. W. Garber, M. Y. Nakai, and R. D. Birkhoff, Adv. Radiat. Biol. 3, 1 (1969).Google Scholar
  4. 4.
    W. F. Krolikowski and W. E. Spicer, Phys. Rev. 185, 882 (1969).Google Scholar
  5. 5.
    W. F. Krolikowski and W. E. Spicer, Phys. Rev. 81, 478 (1970).Google Scholar
  6. 6.
    D. E. Eastman, Solid State Commun. 8, 41 (1970).Google Scholar
  7. 7.
    S. A. Flodström, C. W. B. Martinsson, R. Z. Bachrach, S. B. M. Hagström, and R. S. Bauer, Phys. Rev. Lett. 40, 907 (1978).Google Scholar
  8. 8.
    P. H. Citrin, G. K. Wertheim, and Y. Baer, Phys. Rev. Lett. 41, 1425 (1978).Google Scholar
  9. 9.
    T. M. Duc, C. Guillot, Y. Lassailly, J. Lecante, Y. Jugnet, and J. C. Vedrine, Phys. Rev. Leu. 43, 789 (1979).Google Scholar
  10. 10.
    B. Johansson and N. Mårtensson, Heiv. Phys. Acta 56, 405 (1983).Google Scholar
  11. 11.
    D. Spanjaard, C. Guillot, M. C. Desjonquères, G. Tréglia, and J. Lecante, Surf. Sci. Rep., 5 (1985).Google Scholar
  12. 12.
    W. F. Egelhoff, Jr., Surf. Sci. Rep. 6 (1986).Google Scholar
  13. 13.
    B. Johansson and N. Mårtensson in Handbook on the Physics and Chemistry of Rare Earths (K.A. Gschneidener, L. Eyring, and S. Hüfner, eds.) North-Holland, Amsterdam (1988), p. 361.Google Scholar
  14. 14.
    Y. Jugnet, G. Grenet, and T. M. Duc in Handbook on Synchrotron Radiation, Vol. 2, (G. V. Marr, ed.), North-Holland, Amsterdam (1987), p. 663.Google Scholar
  15. 15.
    B. Johansson, J. Phys. F4, L169 (1974).Google Scholar
  16. 16.
    B. Johansson, Phys. Rev. B20, 1315 (1979).Google Scholar
  17. 17.
    B. Johansson and N. Mårtensson, Phys. Rev. B21, 4427 (1980).Google Scholar
  18. 18.
    B. Johansson, Phys. Rev. B19, 6615 (1979).Google Scholar
  19. 19.
    A. Rosengren and B. Johansson, Phys. Rev. B22, 3706 (1980).Google Scholar
  20. 20.
    P. Steiner, S. Hüfner, N. Mårtensson, and B. Johansson, Solid State Commun. 37, 73 (1981).Google Scholar
  21. 21.
    P. Steiner and S. Hüfner, Solid State Commun. 37, 79 (1981).Google Scholar
  22. 22.
    P. Steiner and S. Hüfner, Solid State Commun. 37, 279 (1981).Google Scholar
  23. 23.
    N. Mårtensson, R. Nyholm, H. Calén, J. Hedman, and B. Johansson, Phys. Rev. B24, 1725 (1981).Google Scholar
  24. 24.
    P. F. de Chåtel and F. R. de Boer, in Valence Fluctuations in Solids (L. M. Falicov, W. Hanke, and M. B. Maple, eds.) North-Holland, Amsterdam (1981), p. 377.Google Scholar
  25. 25.
    J. F. Herbst, D. N. Lowy, and R. E. Watson, Phys. Rev. B6, 1913 (1972).Google Scholar
  26. 26.
    J. F. Herbst, R. E. Watson, and J. W. Wilkins, Phys. Rev. B13, 1439 (1976).Google Scholar
  27. 27.
    J. F. Herbst, R. E. Watson, and J. W. Wilkins, Phys. Rev. B17, 3089 (1978).Google Scholar
  28. 28.
    B. Johansson and A. Rosengren, Phys. Rev. B14, 361 (1976).Google Scholar
  29. 29.
    A. Rosengren and B. Johansson, Phys. Rev. B23, 3852 (1981).Google Scholar
  30. 30.
    B. C. Allen, in Liquid Metals, Chemistry and Physics (S. Z. Beer, ed.), Dekker, New York (1972), p. 161.Google Scholar
  31. 31.
    B. Johansson and P. Munck, J. Less-Common Met. 100, 49 (1984).Google Scholar
  32. 32.
    A. R. Miedema, J. Less-common Met. 46, 67 (1976).Google Scholar
  33. 33.
    R. Kammerer, HASYLAB Internal Report 82–05, (1982).Google Scholar
  34. 34.
    D. A. Shirley, Phys. Rev. 85, 4709 (1972).Google Scholar
  35. 35.
    H. H. Madden and J. E. Houston, J. Appl. Phys. 47, 3071 (1976).Google Scholar
  36. 36.
    S. Tougaard and P. Sigmund, Phys. Rev. B25, 4452 (1982).Google Scholar
  37. 37.
    S. Tougaard, Surf. Sci. 139, 208 (1984).Google Scholar
  38. 38.
    S. Tougaard and B. Jörgensen, Surf. Sci. 143, 482 (1984).Google Scholar
  39. 39.
    A. L. Tofterup, Surf. Sci. 167, 70 (1986).Google Scholar
  40. 40.
    S. Doniach and M. Sunjie, J. Phys. C3, 285 (1970).Google Scholar
  41. 41.
    G. D. Mahan, Phys. Rev. Bll, 4814 (1975).Google Scholar
  42. 42.
    G. K. Wertheim and L. R. Walker, J. Phys. F6, 2297 (1976).Google Scholar
  43. 43.
    P. H. Citrin, G. K. Wertheim, and Y. Baer, Phys. Rev. B16, 4256 (1977).Google Scholar
  44. 44.
    G. K. Wertheim and P. H. Citrin, in Photoemission in Solids I, Vol. 26 of Topics in Applied Physics (M. Cardona and L. Ley, eds.) Springer, Berlin (1978), p. 197.Google Scholar
  45. 45.
    L. Hedin and A. Rosengren, J. Phys. F7, 1339 (1977).Google Scholar
  46. 46.
    N. Mårtensson and R. Nyholm, Phys. Rev. B24, 7121 (1981).Google Scholar
  47. 47.
    R. Nyholm and N. Mårtensson, Chem. Phys. Lett. 45, 754 (1980).Google Scholar
  48. 48.
    M. Ohno and G. Wendin, Solid State Commun. 39, 875 (1981).Google Scholar
  49. 49.
    P. Heimann, J. F. van der Veen, and D. E. Eastman, Solid State Commun. 38, 595 (1981).Google Scholar
  50. 50.
    F. Gerken, A. S. Flodström, J. Barth, L. I. Johansson, and C. Kunz, Phys. Scr. 32, 43 (1985).Google Scholar
  51. 51.
    R. Nyholm and N. Mårtensson, Phys. Rev. B36, 20 (1987).Google Scholar
  52. 52.
    C. P. Flynn, Phys. Rev. Lett. 37, 1445 (1976).Google Scholar
  53. 53.
    P. A. Cox, Struct. Bonding (Berlin) 24, 59 (1975).Google Scholar
  54. 54.
    P. A. Cox, J. K. Lang, and Y. Baer, J. Phys. Fll, 113 (1981).Google Scholar
  55. 55.
    F. Gerken, J. Phys. F13, 703 (1983); Ph.D. Thesis, University of Hamburg (1983).Google Scholar
  56. 56.
    J. K. Lang, Y. Baer, and P. A. Cox, J. Phys. Fll, 121 (1981).Google Scholar
  57. 57.
    A. Nilsson, N. Mårtensson, J. Hedman, B. Eriksson, R. Bergman, and U. Gelius, Surf. Sci. 162, 51 (1985).Google Scholar
  58. 58.
    R. D. Parks, N. Mårtensson, and B. Reihl, xxxin Valence Instabilities (P. Wachter and H. Boppart, eds.) North Holland, Amsterdam (1982), p. 239.Google Scholar
  59. 59.
    J. K. Lang and Y. Baer, Solid State Commun. 31, 945 (1979).Google Scholar
  60. 60.
    R. Kammerer, J. Barth, F. Gerken, C. Kunz, S. A. Flodström, and L. I. Johansson, Solid State Commun. 41, 435 (1982).Google Scholar
  61. 61.
    G. Kaindl, W. D. Schneider, C. Laubschat, B. Reihl, and N. Mårtensson, Surf. Sci. 126, 105 (1983).Google Scholar
  62. 62.
    S. F. Alvarado, M. Campagna, and W. Gudat, J. Electron. Spectros. Relat. Phenom 18, 43 (1980).Google Scholar
  63. 63.
    M. Hecht, L. I. Johansson, J. W. Allen, S. J. Oh, and I. Lindau, Proc. VI VUV-Conf., Charlottesville (1980) pp. 1–64.Google Scholar
  64. 64.
    N. Mårtensson, A. Stenborg, O. Björneholm, A. Nilsson, and J. N. Andersen, Phys. Rev. Lett. 60, 1731 (1988).Google Scholar
  65. 65.
    J. Schmidt-May and R. Nyholm, in VUV-Radiation Physics- (A. Weinreb and A. Ron, eds.), An. Is. Phys. Soc. 6, 348 (1983); J. Schmidt-May, Ph.D. Thesis, University of Hamburg (1985).Google Scholar
  66. 66.
    J. F. van der Veen, F. J. Himpsel, and D. E. Eastman, Phys. Rev. Lett. 44, 189 (1980).Google Scholar
  67. 67.
    G. Apai, R. C. Baetzold, E. Shustorovitch, and R. Jaeger, Surf. Sci. 116, L191 (1982).Google Scholar
  68. 68.
    G. Apai, R. C. Baetzold, P. J. Jupiter, A. J. Viescas, and I. Lindau, Surf. Sci. 134, 122 (1983).Google Scholar
  69. 69.
    N. Mårtensson, H. B. Saalfeld, H. Kuhlenbeck, and M. Neumann, Phys. Rev. B39, 8181 (1989).Google Scholar
  70. 70.
    C. Guillot, D. Chauveau, P. Robin, J. Lecante, M. C. Desjonqueres, G. Treglia, and D. Spanjaard, Surf. Sci. 162, 46 (1985).Google Scholar
  71. 71.
    R. Nyholm and J. Schmidt-May, J. Phys. C17, L113 (1984).Google Scholar
  72. 72.
    G. Treglia, M. C. Desjonqueres, D. Spanjaard, Y. Lasailly, C. Guillot, Y. Jugnet, T. M. Duc, and J. Lecante, J. Phys. C14, 3463 (1981).Google Scholar
  73. 73.
    M. C. Desjonqueres, D. Spanjaard, Y. Lasailly, and C. Guillot, Solid State Commun. 34, 807 (1980).Google Scholar
  74. 74.
    M. C. Desjonqueres and F. Cyrot-Lackmann, Solid State Commun. 18, 1127 (1976).Google Scholar
  75. 75.
    H. L. Skriver, in Systematics and the Properties of the Lanthanides (S. P. Sinha, ed.) Reidel, Dordrecht (1983), p. 239.Google Scholar
  76. 76.
    O. K. Andersen, O. Jepsen, and D. Glötzel, in Highlights in Condensed Matter Theory (F. Bassani, F. Fumi, and M. P. Tosi, eds.), North-Holland, New York (1985).Google Scholar
  77. 77.
    H. L. Skriver, Phys. Rev. B31, 1909 (1985).Google Scholar
  78. 78.
    J. C. Duthie and D. G. Pettifor, Phys. Rev. Lett. 38, 564 (1977).Google Scholar
  79. 79.
    W.-D. Schneider, C. Laubschat, and B. Reihl, Phys. Rev. B27, 6538 (1983).Google Scholar
  80. 80.
    A. Stenborg, J. N. Andersen, O. Björneholm, A. Nilsson, and N. Mårtensson, Phys. Rev. Lett. 63, 187 (1989).Google Scholar
  81. 81.
    G. K. Wertheim and G. Crecelius, Phys. Rev. Lett. 40, 813 (1978).Google Scholar
  82. 82.
    A. Rosengren and B. Johansson, Phys. Rev. B26, 3068 (1982).Google Scholar
  83. 83.
    J. W. Allen, L. I. Johansson, I. Lindau, and S. B. M. Hagström, Phys. Rev. B21, 1335 (1980).Google Scholar
  84. 84.
    M. Domcke, C. Laubschat, M. Prietsch, T. Mandel, G. Kaindl, and W.-D. Schneider, Phys. Rev. Lett. 56, 1287 (1986).Google Scholar
  85. 85.
    N. D. Lang and W. Kohn, Phys. Rev. B1, 4555 (1970)1Google Scholar
  86. 86.
    K. H. Lau and W. Kohn, J. Phys. Chem. Solids 37, 99 (1976).Google Scholar
  87. 87.
    E. Wimmer, M. Weinert, A. J. Freeman and H. Krakauer, Phys. Rev. B24, 2292 (1981).Google Scholar
  88. 88.
    P. J. Feibelman, Phys. Rev. B39, 4866 (1989).Google Scholar
  89. 89.
    R. Kammerer, J. Barth, F. Gerken, C. Kunz, S. A. Flodström, and L. I. Johansson, Phys. Rev. B26, 3491 (1982).Google Scholar
  90. 90.
    R. Kammerer, A. S. Flodström, and C. Kunz, unpublished data.Google Scholar
  91. 91.
    R. Nyholm, A. S. Flodström, L. I. Johansson, S.-E. Hörnström, and J. Schmidt-May, Surf. Sci. 149, 449 (1985).Google Scholar
  92. 92.
    J. H. Rose, H. B. Shore, D. Geldart, and M. Rasolt, Solid State Commun. 19, 619 (1976).Google Scholar
  93. 93.
    W. Tyson and N. Miller, Surf. Sci. 62, 267 (1977).Google Scholar
  94. 94.
    A. R. Miedema, Z. Metallkd. 69, 287 (1978).Google Scholar
  95. 95.
    A. R. Miedema, Physica 100B, 1 (1980).Google Scholar
  96. 96.
    W. Eberhardt, G. Kalkoffen, and C. Kunz, Solid State Commun. 32, 901 (1979).Google Scholar
  97. 97.
    T.-C. Chiang and D. E. Eastman, Phys. Rev. B23, 6836 (1981).Google Scholar
  98. 98.
    P. H. Citrin, G. K. Wertheim, and M. Schluter, Phys. Rev. B20, 3067 (1979).Google Scholar
  99. 99.
    C.-O. Almbladh and A. L. Morales, J. Phys. F15, 991 (1985).Google Scholar
  100. 100.
    G. Augonoa, J. Koutecky, and C. Pisani, Surf. Sci. 121, 355 (1982).Google Scholar
  101. 101.
    C. E. Moore, Atomic Energy Levels, US Natl. Bur. Std. Circ. No. 467, Vol. I, US Natl. Bur. Std., Washington, D.C. (1949).Google Scholar
  102. 102.
    V. Ponec, Catal. Rev. 11, 41 (1975).Google Scholar
  103. 103.
    I. Lindau and W. E. Spicer, J. Electron Spectros. Relat. Phenom. 3, 409 (1974).Google Scholar
  104. 104.
    V. Murgai, L. C. Gupta, R. D. Parks, N. Mårtensson, and B. Reihl, in Valence Instabilities (P. Wachter and P. Boppart, eds.) North Holland, Amsterdam (1982), p. 299.Google Scholar
  105. 105.
    L. I. Johansson, A. Flodström, S.-E. Hörnström, B. Johansson, J. Barth, and F. Gerken, Solid State Commun. 41, 427 (1982).Google Scholar
  106. 106.
    S.-E. Hörnström, L. Johansson, A. Flodström, R. Nyholm, and J. Schmidt-May, Surf. Sci. 160, 561 (1985).Google Scholar
  107. 107.
    T. S. Chou, M. L. Perlman, and R. E. Watson, Phys. Rev. B14, 3248 (1976).Google Scholar
  108. 108.
    S.-E. Hörnström, L. I. Johansson, and A. Flodström, Appl. Surf. Sci. 26, 27 (1986).Google Scholar
  109. 109.
    B. Johansson and A. Rosengren, Phys. Rev. B11, 2836 (1975).Google Scholar
  110. 110.
    B. Johansson, J. Phys. F5, 1241 (1975).Google Scholar
  111. 111.
    K. A. Gschneidner, J. Less-Common Met. 17, 13 (1969).Google Scholar
  112. 112.
    A. R. Miedema, J. Less-Common Met. 46, 167 (1976).Google Scholar
  113. 113.
    F. R. de Boer, W. H. Dijkman, W. C. M. Mattens, and A. R. Miedema, J. Less-Common Met. 64, 241 (1979).Google Scholar
  114. 114.
    C. Laubschat, G. Kaindl, W.-D. Schneider, B. Reihl, and N. Mårtensson, Phys. Rev. B33, 6675 (1986).Google Scholar
  115. 115.
    N. Mårtensson, B. Reihl, R. A. Pollak, F. Holtzberg, and G. Kaindl, Phys. Rev. B25, 6522 (1982).Google Scholar
  116. 116.
    J. N. Andersen, O. Björneholm, M. Christiansen, A. Nilsson, C. Wigren, J. Onsgaard, A. Stenborg, and N. Mårtensson, Surf. Sci. 232, 63 (1990).Google Scholar
  117. 117.
    D. Tomanek, V. Kumar, S. Holloway, and K. H. Bennemann, Solid State Commun. 41, 273 (1982).Google Scholar
  118. 118.
    J. F. van der Veen, F. J. Himpsel, and D. E. Eastman, Phys. Rev. B25, 7388 (1982).Google Scholar
  119. 119.
    F. J. Himpsel, J. F. Morar, F. R. McFeely, R. A. Pollak, and G. Hollinger, Phys. Rev. B30, 7236 (1984).Google Scholar
  120. 120.
    C. Guillot, P. Roubin, J. Lecante, M. C. Desjonqueres, G. Treglia, D. Spanjaard, and Y. Jugnet, Phys. Rev. B30, 5487 (1984).Google Scholar
  121. 121.
    J. T. Yates, T. E. Madey and J. C. Campuzano, The adsorption of carbon monoxide by the transition metals, in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol 3b, Chemisorption Systems, (D. A. King and D. P. Woodruff eds.), Elsevier, Amsterdam (1987).Google Scholar
  122. 122.
    M. L. Shek, P. M. Stefan, C. Binns, I. Lindau, and W. E. Spicer, Surf. Sci. 115, L81 (1982).Google Scholar
  123. 123.
    K. Duckers, K. C. Prince, H. P. Bonzel, V. Chab, and K. Horn, Phys. Rev. B36, 6292 (1987).Google Scholar
  124. 124.
    R. C. Baetzold, G. Apai, E. Shustrorovich, and R. Jaeger, Phys. Rev. B26, 4022 (1982).Google Scholar
  125. 125.
    G. Apai, R. C. Baetzold, E. Shustrorovich, and R. Jaeger, Surf. Sci. 116, L191 (1982).Google Scholar
  126. 126.
    S. Yin and E. Tosatti, J. Phys. Soc. Jpn 49, Suppl. A. 105 (1980).Google Scholar
  127. 127.
    F. Bechstedt, Phys. Status Solidi 112, 9 (1982).Google Scholar
  128. 128.
    J. F. Morar, F. J. Himpsel, G. Hollinger, G. Hughes, and J. L. Jordan, Phys. Rev. Lett. 54, 1960 (1985).Google Scholar
  129. 129.
    C. Priester, G. Allan, and M. Lannoo, Phys. Rev. Lett. 58, 1989 (1987).Google Scholar
  130. 130.
    A. Kahn, Surf. Sci. Rep. 3, 193 (1983).Google Scholar
  131. 131.
    D. E. Eastman, T.-C. Chiang, P. Heimann, and F. J. Himpsel, Phys. Rev. Lett. 45, 656 (1980).Google Scholar
  132. 132.
    S. Wiklund, K. O. Magnusson, and A. S. Flodström, Surf. Sci. 238 187 (1990).Google Scholar
  133. 133.
    M. Taniguchi, S. Suga, M. Seki, B. Stin, K. L. T. Kobayashi, and M. Kanzaki, J. Phys. C16, L45 (1983).Google Scholar
  134. 134.
    H.-U. Baier, L. Koenders, and W. Monch, Surf. Sci. 184, 345 (1987).Google Scholar
  135. 135.
    K. C. Prince, G. Paolucci, V. Chab, M. Surman, and A. M. Bradshaw, Surf. Sci. 206, L871 (1988).Google Scholar
  136. 136.
    R. Cao, K. Miyano, T. Kendelewicz, I. Lindau, and W. E. Spicer, Phys. Rev. B39 11146 (1989).Google Scholar
  137. 137.
    A. B. Lean and R. Ludeke, Phys. Rev. B39, 6223 (1989).Google Scholar
  138. 138.
    V. Hinkel, L. Sorba, and K. Horn, Surf. Sci.194, 597 (1988).Google Scholar
  139. 139.
    J. N. Andersen and U. O. Karlsson, Phys. Rev. B41, 3844 (1990).Google Scholar
  140. 140.
    W. G. Wilke, V. Hinkel, W. Theis, and K. Horn, Phys. Rev. B40, 9824 (1989).Google Scholar
  141. 141.
    D. H. Ehlers, F. U. Hillebrecht, C. T. Lin, E. Schönerr, and L. Ley, Phys. Rev. 840, 3812 (1989).Google Scholar
  142. 142.
    R. E. Watson, J. W. Davenport, M. L. Perlman, and T. K. Sham, Phys. Rev. B24, 1791 (1981).Google Scholar
  143. 143.
    J. W. Davenport, R. E. Watson, M. L. Perlman, and T. K. Sham, Solid State Commun. 40, 999 (1981).Google Scholar
  144. 144.
    W. Mönch, Solid State Commun. 58, 215 (1986).Google Scholar
  145. 145.
    C. U. S. Larsson, A. Flodström, U. O. Karlsson, and Y. Yang, J. Vac. Sci. Technol. A7, 2044 (1989).Google Scholar
  146. 146.
    R. S. Becker, J. A. Golovchenko, and B. S. Swartzenruber, Phys. Rev. Lett. 54, 2678 (1985).Google Scholar
  147. 147.
    A. L. Wachs, T. Miller, A. P. Shapiro, and T.-C. Chiang, Phys. Rev. B35, 5514 (1987).Google Scholar
  148. 148.
    J. Aarts, A.-J. Hoeven, and P. K. Larsen, Phys. Rev. B38, 3925 (1988).Google Scholar
  149. 149.
    C. J. Karlsson, E. Landemark, L. S. O. Johansson, U. O. Karlsson, and R. I. G. Uhrberg, Phys. Rev. B41, 1521 (1990).Google Scholar
  150. 150.
    J. E. Northrup, Phys. Rev. Lett. 57, 154 (1986).Google Scholar
  151. 151.
    R. D. Schnell, F. J. Himpsel, A. Bogen, D. Rieger, and W. Steinmann, Phys. Rev. B32, 8052 (1985).Google Scholar
  152. 152.
    D. T. Rich, T. Miller, and T.-C. Chiang, Phys. Rev. Lett. 60, 357 (1988).Google Scholar
  153. 153.
    T. Miller, T. C. Hsieh, and T.-C. Chiang, Phys. Rev. B33, 6983 (1986).Google Scholar
  154. 154.
    F. J. Himpsel, P. Heimann, T.-C. Chiang, and D. E. Eastman, Phys. Rev. Leu. 45, 1112 (1980).Google Scholar
  155. 155.
    F. J. Himpsel, D. E. Eastman, P. Heimann, B. Reihl, C. W. White, and D. M. Zehner, Phys. Rev. B24, 1120 (1981).Google Scholar
  156. 156.
    R. D. Bringans, M. A. Olmstead, R. I. G. Uhrberg, and R. Z. Bachrach, Phys. Rev. B36, 9569 (1987).Google Scholar
  157. 157.
    S. Brennan, J. Stohr, R. Jaeger, and J. E. Rowe, Phys. Rev. Lett. 45, 1414 (1980).Google Scholar
  158. 158.
    J. C Woicik, Ph.D. Dissertation, Stanford University (1989).Google Scholar
  159. 159.
    S. B. DiCenzo, P. A. Bennett, D. Tribula, P. Thiry, G. K. Wertheim, and J. E. Rowe, Phys. Rev. 831, 2330 (1985).Google Scholar
  160. 160.
    T. Miller, A. P. Shapiro, and T.-C. Chiang, Phys. Rev. B31, 7915 (1985).Google Scholar
  161. 161.
    T. Miller, E. Rosenwinkel, and T.-C. Chiang, Solid State Commun. 47, 935 (1983).Google Scholar
  162. 162.
    T. Weser, A. Bogen, B. Konrad, R. D. Schnell, C. A. Schug, and W. Steinmann, Phys. Rev. B35, 8184 (1987).Google Scholar
  163. 163.
    R. McGrath, R. Cimino, W. W. Braun, G. Thornton, and I. T. McGovern, Vacuum 38, 251 (1988).Google Scholar
  164. 164.
    J. A. Kubby, J. E. Griffith, R. S. Becker, and J. S. Vickers, Phys. Rev. B36, 6079 (1987).Google Scholar
  165. 165.
    G. Hollinger and F. J. Himpsel, J. Vac. Sci. Technol. Al, 640 (1983).Google Scholar
  166. 166.
    C. U. S. Larsson, A. Flodström, R. Nyhom, L. Incoccia, and F. Senf, J. Vac. Sci. Technol. A5, 3321 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Anders Flodström
    • 1
  • Ralf Nyholm
    • 2
  • Börje Johansson
    • 3
  1. 1.Department of Materials ScienceRoyal Institute of TechnologyStockholmSweden
  2. 2.MAX-LaboratoryUniverstity of LundLundSweden
  3. 3.Condensed Matter Theory Group, Department of PhysicsUniversity of UppsalaUppsalaSweden

Personalised recommendations